Quantcast
Channel: Giuseppe Natalini – ventilab
Viewing all 92 articles
Browse latest View live

Ventilazione meccanica volumetrica o pressometrica nel paziente ostruttivo grave?

$
0
0

daisyAffrontiamo ora un tema rimasto aperto nella discussione al post precedente: è meglio una modalità volumetrica o pressometrica per la ventilazione meccanica nei pazienti con grave patologia ostruttiva acuta ed iperinflazione dinamica?

Per rispondere a questa domanda, vediamo cosa succede applicando una ventilazione a volume controllato o a pressione controllata allo stesso paziente ostruttivo. Per poter facilmente manipolare ventilazione e meccanica respiratoria, utilizzeremo i dati e le curve di pressione e flusso generati con un modello matematico a cui specifichiamo le caratteristiche del paziente e l’impostazione della ventilazione.(nota 1)

Dopo aver attribuito al paziente una elevata resistenza delle vie aeree ed una elastanza sostanzialmente normale (una situazione simile a quella del paziente protagonista del post precedente), cerchiamo di ventilarlo “bene” sia in volume controllato che in pressione controllata. Teniamo conto che il nostro paziente è in fase acuta, in ventilazione controllata ed ha una grave ipotensione. Date queste premesse, una buona ventilazione meccanica dovrebbe ridurre al minimo la PEEP totale, sia per migliorare il ritorno venoso e quindi la portata cardiaca, sia per ridurre la pressione di plateau, qualora ve ne fosse bisogno. Possiamo quindi condividere che, indipendentemente da volumetrica o pressometrica, dovremo erogare un volume corrente normale (ricordiamo che in fisiologia è normale un volume corrente di circa 6-7 ml/kg di peso ideale) lasciando un lungo tempo espiratorio. Quindi potremmo impostare una ventilazione iniziale con 450 ml di volume corrente senza PEEP, 12/min di frequenza respiratoria, 1” di tempo inspiratorio e 4” di tempo espiratorio, ed una rampa di 0.1”. Ovviamente questa impostazione dovrà essere rivalutata alla luce dei risultati ottenuti (ad esempio per decidere se e quanta PEEP applicare).

Impostiamo quindi una pressione controllata ed un volume controllato, scegliendo il livello di pressione controllata che consente di ottenere lo stesso volume corrente della ventilazione a volume controllato. Vediamo le curve di pressione e flusso nelle due modalità di ventilazione in figura 1.

Figura 1.

Figura 1.

In ventilazione a pressione controllata abbiamo dovuto applicare un livello di pressione di 35 cmH2O per erogare 450 ml di volume corrente (curva in alto a sinistra). In volume controllato abbiamo invece raggiunto una pressione di picco di 40 cmH2O per assicurarci lo stesso volume corrente (curva in alto a sinistra).

Possiamo considerare un vantaggio della pressione controllata la riduzione della pressione delle vie aeree rispetto al volume controllato? Ritengo di no, come forse avranno intuito i lettori più attenti di ventilab. Cerchiamo di capire il perché.

La pressione che leggiamo sul display e sulle curve del ventilatore meccanico è la pressione NEL VENTILATORE e NON NEI POLMONI del paziente.

Durante l’insufflazione, il flusso aereo si sposta dal ventilatore al paziente perché nel ventilatore c’è una pressione più alta rispetto a quella del parenchima polmonare. Al contrario, in espirazione l’aria esce dai polmoni perché questi hanno una pressione più alta rispetto a quella del ventilatore. E’ una legge molto semplice: il flusso si sposta dal punto in cui la pressione è più elevata a quello in cui è più bassa. In termini matematici si può esprimere questo concetto con la formula V’=dP/R, dove V’ è il flusso, dP la differenza di pressione tra il punto di partenza e quello di arrivo del flusso ed R la resistenza che si oppone al flusso. Quindi quando c’è flusso la pressione nel ventilatore è sempre diversa dalla pressione nei polmoni.

Ritorniamo al nostro caso: la ventilazione a pressione controllata consente di avere 5 cmH2O di pressione in meno rispetto al volume controllato nel VENTILATORE. Mantiene questo vantaggio anche nel PARENCHIMA POLMONARE?

Per rispondere a questa domanda dobbiamo necessariamente misurare la pressione intrapolmonare. Ricordando la relazione V’=dP/R, possiamo anche dire che ventilatore e polmoni hanno la stessa pressione quando non c’è flusso (e le vie aeree sono pervie). Con una pausa del flusso alla fine della inspirazione, consentiamo alla pressione nel ventilatore e nel parenchima polmonare di equilibrarsi: la pressione che leggiamo nel ventilatore sarà quindi simile a quella intrapolmonare.

Eseguiamo nel nostro paziente “modello” l’occlusione delle vie aeree a fine inspirazione durante la ventilazione a pressione controllata e durante quella in volume controllato e misuriamo le rispettive pressioni di plateau (figura 2).

Figura 2.

Figura 2.

Con entrambe le ventilazioni abbiamo 14 cmH2O di pressione di plateau (curve in alto). Un dato ampiamente prevedibile: la pressione di plateau è INDIPENDENTE dalla modalità di ventilazione, ed è determinata unicamente dal volume corrente erogato, dall’elastanza dell’apparato respiratorio e dalla PEEP totale. Le strutture alveolari sono esposte (in media) alla pressione di plateau ed è questo il motivo per cui si utilizza la pressione di plateau (e non quella di picco) per guidare la ventilazione protettiva.

Da quanto abbiamo detto ne consegue necessariamente che, a parità di volume erogato, ventilazione pressometrica e volumetrica devono essere considerate equivalenti in termini di protezione dal danno associato alla ventilazione meccanica.

Spesso nella pratica clinica la ventilazione pressometrica viene adottata per limitare la pressione di picco nelle vie aeree, senza però badare alla riduzione di volume corrente ad essa associata. Penso sia ora evidente che potremmo ottenere un risultato analogo (in termini di pressione alveolare) se scegliessimo una ventilazione a volume controllato con riduzione del volume corrente. La differenza è data dal volume corrente e non dalla modalità di ventilazione.

Durante la fase di ventilazione controllata (quindi con paziente prevalentemente passivo), a volte preferisco la ventilazione a volume controllato per alcuni piccoli vantaggiosi effetti “secondari” di questa scelta: 1) obbliga a prendere decisioni esplicite (e quindi consapevoli) sul volume corrente, senza affidarsi alla sua riduzione imprevedibile (e casuale!) legata alla riduzione della pressione applicata; 2) consente di avere sempre sott’occhio una breve pressione di pausa di fine inspirazione (se questa è introdotta nell’impostazione della ventilazione). Questa consente di avere in evidenza una stima approssimativa della pressione di plateau; 3) la valutazione qualitativa della curva di pressione offre informazioni anche su altri segni di possibile sovradistensione polmonare, come ad esempio lo stress index.

Le considerazioni che abbiamo fatto finora ci fanno concludere che anche nel paziente ostruttivo in fase acuta e sottoposto a ventilazione controllata:

1) la diatriba tra ventilazione volumetrica e pressometrica è fuorviante, quello che è veramente importante è scegliere il volume corrente appropriato da raggiungere;

2) il risultato di ogni ventilazione controllata nei pazienti con insufficienza respiratoria dovrebbe essere valutato anche alla luce della pressione di plateau e della PEEP totale.

Un sorriso a tutti gli amici di ventilab.

 

nota 1: Non entro nei dettagli del modello. I risultati sono affidabili, anche se le curve di pressione e flusso sono “squadrate”, per effetto dei cambi istantanei del segnale che il modello genera.


ARDS: imparare dal passato.

$
0
0

maradona-gelsi scudetto napoli 10-05-1987Di solito amiamo citare l’ultimo articolo, quello appena uscito sul New England… Buona cosa, per carità…ma sono convinto che si possa imparare (e soprattutto CAPIRE) molto anche dal primo articolo.

Vorrei quindi proporre agli amici di ventilab un affascinante viaggio nel passato per rivisitare insieme il primo articolo che ha parlato di ARDS (Acute Respiratory Distress Syndrome, come viene definita oggi, dopo essere stata chiamata fino agli anni novanta Adult Respiratory Distress Syndrome).

L’ARDS nasce ufficialmente sabato 12 agosto 1967, quando viene pubblicato su Lancet l’articolo “Acute Respiratory Distress in Adult”. Il primo autore è David Ashbaugh, Assistant Professor of Surgery: dobbiamo rassegnarci, l’ARDS è stata “scoperta” da un chirurgo…d’altri tempi…ashbaugh2

La Sindrome da Distress Respiratorio Acuto nell’Adulto (questo quindi il primo nome della ARDS) prende le mosse dalla semplice (ma attenta ed intelligente) osservazione clinica e laboratoristica di pochi pazienti da parte di medici preparati e curiosi. Come del resto è successo per quasi tutte le malattie, scoperte indipendentemente dai dogmi di una sedicente evidence-based medicine.

Gli autori studiarono le caratteristiche di 12 pazienti tra i 272 che avevano sottoposto a supporto respiratorio. Questi avevano malattie diverse (7 traumi, 4 polmoniti e 1 pancreratite) ma una caratteristica comune: non rispondevano alle comuni terapie. Ashbaugh ed i suoi colleghi capiscono fin da allora che, considerata la stessa risposta del polmone a stimoli diversi, si può postulare un meccanismo comune del danno.

Presentazione clinica.

Il quadro clinico era carattezzato da ipossiemia (cianosi refrattaria alla ossigenoterapia), grave dispnea e tachipnea ed era insorto entro 4 giorni dall’inizio della malattia primitiva. Ritroviamo qui due caratteristiche fondamentali anche per la definizione attuale della ARDS: l’insorgenza acuta e l’ipossiemia. Ma l’ipossiemia qui descritta appare ben più grave rispetto ai criteri attuali per la diagnosi di ARDS (PaO2/FIO2<300): i pazienti ventilati di Ashbaugh e colleghi avevano una SaO2 media di 77% con una FIO2 media di 0.76 (quello che stava meglio una SaO2 del 74% con una FIO2 di 0.4). L’attuale definizione di ARDS (vedi post del 24/06/2012) comprende anche pazienti in cui l’ipossiemia non è molto grave: paradossalmente oggi potrebbe avere una ARDS anche un paziente senza insufficienza respratoria. Infatti una definizione tradizionale di insufficienza respiratoria la identifica con una PaO2 inferiore a 60 mmHg. Quindi si potrebbe fare la diagnosi in un soggetto con una PaO2 in aria di 62 mmHg (il PaO2/FIO2 sarebbe 295 mmHg). Uno scenario clinico ben diverso da quello descritto nell’articolo del 1967.

Fin da questo primo articolo l’ARDS è stata caratterizzata da una bassa compliance in tutti i pazienti (la compliance dinamica era compresa tra 9 a 19 ml/cmH2O). Gli autori sapevano bene che questa compliance non è come quella statica, ma che è comunque un valore gravemente ridotto rispetto al normale (50-125 ml/cmH2O per gli autori). La bassa compliance dell’apparato respiratorio è quindi caratteristica della ARDS dalle sue origini e ne può definire gravità forse meglio dell’abusato PaO2/FIO2, essendo correlata alla percentuale di tessuto polmonare normalmente aerato (Gattinoni et al. Am Rev Respir Dis 1987; 136:730-6) ed alla driving pressure (vedi post del 28/02/2015). Fa riflettere che la compliance non sia parte degli attuali criteri diagnostici di ARDS, nonostante sappiamo essere uno dato facilmente misurabili al letto del paziente.

Aspetto radiologico ed anatomo-patologico.

L’aspetto radiologico era simile in tutti i pazienti ed evolveva parallelamente al quadro clinico. Si iniziava con l’insorgenza di infiltrati alveolari bilaterali a chiazze (“patchy”) che diventavano confluenti e quindi veri e propri consolidamenti prima della morte. Un quadro radiologico veramente tipico della ARDS, forse più caratteristico, esplicativo e chiaro di quello che ritroviamo negli ultimi criteri di definizione della ARDS, che parlano semplicemente di opacità polmonari bilaterali.

Nei sette pazienti deceduti fu eseguita l’autopsia. L’esame microscopico dei 5 pazienti morti precocemente mostrava atelectasia alveolare, edema ed emorragia interstiziale ed intra-alveolare (ricordiamo questo dettaglio, sarà interessante quando parleremo della terapia). Nei due pazienti morti tardivamente il quadro era caratterizzato da infiammazione e fibrosi interstiziale, era già compresa la possibile evoluzione fibrotica della malattia.

Terapia.

L’unica terapia farmacologica per la quale gli autori hanno avuto la sensazione potesse forse essere efficace in qualche paziente è la terapia steroidea. Le conoscenze attuali non ci portano molto lontano da questa iniziale intuizione.

Ma il capolavoro viene con la strategia di ventilazione. Ricordiamo che siamo cinquant’anni fa, che nessuno fino ad allora aveva mai parlato di ARDS, e che sulla ventilazione meccanica c’erano pochissime idee e confusissime.

Ashbaugh ed i suoi colleghi capirono che la Intermittent Positive Pressure Ventilation (IPPV), cioè la ventilazione meccanica senza PEEP, non era efficace, se non forse in un paziente che veniva ventilato con un sigh ogni 2 minuti (“recovery in this patient may have been partly due to the respirator”). Da notare il volume corrente erogato, mediamente 450 ml, cioè circa 6 ml/kg!

Era stato invece proposta l’efficacia della Continuous Positive Pressure Ventilation (CPPV), cioè la ventilazione meccanica con PEEP di 5-10 cmH2O. La CPPV, provata per la prima volta nel quinto paziente della serie, ha poi sempre dato un notevole miglioramento ossigenativo ed i pazienti che la utilizzavano, se morivano, lo facevano per cause diverse dall’insufficienza respiratoria. Questa scoperta, tutt’ora decisiva nel trattamento dei pazienti con ARDS, da sola meriterebbe la standing ovation. Ma, prima di tributarla, leggiamo le riflessioni di Ashbaugh e colleghi sull’effetto positivo della PEEP: “La base teorica per l’utilizzo della PEEP coincide con la base teorica della perdita di compliance polmonare. Se il surfactant è diminuito, gli alveoli dovrebbero collassare in espirazione quando la pressione di fine espiratozione è a livello atmosferico. Gli alveoli collassati richiedono pressioni più grandi per riaprirsi, spiegando cioè la rilevante perdita di compliance. La PEEP potrebbe teoricamente prevenire il collasso completo e migliorare l’ossigenazione mantenendo la ventilazione alveolare…L’uso della PEEP guadagna solamente tempo: la prognosi resta grave se non si cura con successo la malattia sottostante.

Ovviamente gli autori dell’articolo sanno di non essere giunti ad una conclusione definitiva, ma di aver solamente aperto una strada da verificare (“Questo apparente aumento di sopravvivenza con l’utilizzo della CPPV è incerto per il piccolo numero di pazienti, ma potrebbe diventare significativo quando ci sarà una maggior esperienza”).

Ora finalmente possiamo fare l’applauso. Con soli 12 pazienti studiati con cura gli autori sono arrivati ad intuizioni la cui portata è evidente a ciascuno di noi. Oggi uno studio come questo non sarebbe certamente pubblicato da Lancet nè da alcuna rivista che si ritenga “seria”. Ma la mole di conoscenze che si sono schiuse davanti ai nostri occhi ed alle nostre intelligenze con questo piccolo studio sono superiori a quelle di moltissimi trial randomizzati e controllati multicentrici con migliaia di pazienti pubblicati sull’ultimo numero del New England… Ovviamente le ipotesi richiedono sempre una conferma, è necessario verificare con i dati ciò che si pensa di aver capito. Ma la cultura medica ed il tentativo di capire dovrebbero sempre essere la parte nobile del lavoro, e la verifica delle ipotesi solo l’atto necessario e conclusivo del processo. Per un bel calcio, i mediani dovrebbero essere di supporto ai fuoriclasse …

Un sorriso a tutti gli amici di ventilab.

Strain, compliance e driving pressure nella ventilazione protettiva dei pazienti con ARDS

$
0
0

fishbowlStress e strain sono due concetti sempre più ricorrenti nella ventilazione protettiva del paziente con Acute Respiratory Distress Syndrome (ARDS). Cerchiamo di capire se e come possono esserci utili nella pratica clinica.

Lo strain in fisica descrive la deformazione di un corpo rispetto alla sua struttura iniziale (figura 1).

Applicato al polmone possiamo intendere lo strain come il rapporto tra la deformazione applicata al polmone (cioè il volume corrente) rispetto al suo volume iniziale (cioè la capacità funzionale residua).

Strain

Figura 1

La figura 2 ci aiuta a ricordare che la Capacità Funzionale Residua (FRC, Functional Redisual Capacity) è il volume del polmone alla fine di una espirazione passiva completa.

functional-residual-capacity

Figura 2

Come sappiamo quando si parla di “capacità” (come nel caso della Capacità Funzionale Residua) in spirometria si intende la somma di volumi polmonari. In particolare la Capacità Funzionale Residua è la somma di Volume di Riserva Espiratoria (nella figura 2 ERV, Expiratory Reserve Volume, cioè il volume che possiamo espirare con un’espirazione massimale) ed il Volume Residuo (RV, residual volume, volume che non possiamo espirare, nemmeno con un’espirazione massimale).

Possiamo considerare la capacità funzionale residua come la dimensione iniziale di un contenitore nel quale andiamo ad aggiungere il volume corrente. A parità di volume corrente, un contenitore (cioè una capacità funzionale residua) più grande subirà una deformazione relativa (cioè uno strain) minore rispetto ad un contenitore di dimensioni minori (figura 3).

lung_volumes

Figura 3

Facciamo un esempio. Gino è un soggetto maschio adulto con un polmone sano (figura 4a) ed una capacità funzionale residua di 2500 ml. Gino ventila con un volume corrente di circa 500 ml, lo strain è quindi pari a 500 ml/2500 ml, cioè 0.2. Ipotizziamo che, sfortunatamente, a Gino una ARDS (figura 4b) determini la riduzione della capacità funzionale residua a 800 ml (di solito la gravità della ARDS è direttamente proporzionale alla riduzione della capacità funzionale residua).

rx torace normale vs ards

Figura 4

Se a Gino continuiamo a somministrare 500 ml di volume corrente (come quando era sano), avremo un rapporto volume corrente/capacità funzionale residua di 500 ml/800 ml, cioè uno strain di circa 0.63. Come a tutti i pazienti con ARDS, applichiamo a Gino anche una PEEP, che inevitabilmente contribuisce ad aumentare ulteriormente il volume polmonare al di sopra della capacità funzionale residua. L’incremento di volume indotto dalla PEEP si somma al volume corrente nella determinazione dello strain. Ipotizziamo di applicare 15 cmH2O di PEEP e che questo aumenti il volume polmonare di fine espirazione di circa 300 ml. In questo caso, se si mantiene costante il volume corrente a 500 ml, lo strain sarà quindi (500 ml + 300 ml)/800 ml, cioè 1.

Gino aveva uno strain di 0.2 quando era sano ed uno strain di 1 con l’ARDS, a parità di volume corrente: ha cioè quintuplicato la deformazione del polmone. Un fenomeno tutt’altro che trascurabile, poiché l’aumento dello strain sopra una soglia critica è un elemento determinante per il danno polmonare indotto dalla ventilazione.

E’ quindi importante misurare la capacità funzionale residua e determinare lo strain nei pazienti con ARDS? No, a mio personale parere: ad oggi non è stata identificato un convincente valore soglia di strain da non superare nella pratica clinica. Ed inoltre sappiamo che lo strain indotto dalla PEEP (definito anche strain statico) è meno dannoso dello strain associato al volume corrente (strain dinamico). Quindi, anche qualora fosse dato un valore soglia allo strain, saremmo in difficoltà a scorporare gli effetti della PEEP da quelli del volume corrente.

Il concetto di strain, anche se per ora sembra povero di chiare implicazioni pratiche, è comunque estremamente interessante dal punto di vista concettuale. Ci dice che il volume corrente deve essere proporzionale al volume del polmone ventilabile nei pazienti con ARDS: il volume corrente deve quindi essere adeguato, oltre che al peso ideale del paziente, anche alla gravità della ARDS.

Possiamo però riconoscere che in fondo un’informazione simile ci è offerta anche dalla cara, vecchia compliance (che caratterizza la ARDS fin dalla sua nascita, vedi post del 31/01/2016). Come sappiamo la compliance esprime la variazione di volume dell’apparato respiratorio per ogni cmH2O di pressione ad esso applicato e si misura dividendo il volume corrente per la differenza di pressione statica (cioè di plateau) tra inspirazione ed espirazione. Gino quando era sano probabilmente aveva una normale compliance dell’apparato respiratorio (circa 100 ml/cmH2O), quindi riusciva a ventilare i suoi 500 ml con 5 cmH2O di differenza di pressione tra inspirazione ed espirazione. Quando gli viene l’ARDS, la compliance si riduce a 30 ml/cmH2O (come quella di molti pazienti con ARDS). Meno di un terzo del normale, una riduzione proporzionalmente simile a quella della capacità funzionale residua, che si era ridotta da 2500 a 800 ml. Già quasi 30 anni fa è stato proposto è stato osservato che il valore di compliance corrisponde all’incirca alla percentuale di polmone rimasto normalmente aerato nei pazienti con ARDS (1). Quindi una compliance di 30 ml/cmH2O potrebbe grossolanamente indicare che il 30% del tessuto polmonare è rimasto normalmente ventilabile.

Pensiamo ora a quello che facciamo quando ventiliamo i pazienti con ARDS facendoci guidare dalla driving pressure (vedi post del 28/02/2015): quando scegliamo una PEEP per ridurre la driving pressure, altro non facciamo che aumentare quanto possibile la compliance. Dopo di questo, se necessario, limitiamo il volume corrente (e quindi la driving pressure) per evitare la comparsa di segni di sovradistensione.

Di solito lo strain è associato allo stress, che altro non è che la driving pressure. Stress e strain sono direttamente proporzionali: stress = k · strain.

Per quanto detto finora, questa equazione, relativamente all’apparato respiratorio, diventa: driving pressure = k ·VT/FRC.

Tradotta in italiano, l’equazione ci dice che tanto più è elevata la driving pressure, tanto maggiore è la deformazione che sta subendo il polmone. E’ stato osservato che il rischio di morte nei pazienti con ARDS aumenta quando la driving pressure supera i 15 cmH2O

Dopo quanto detto finora si può almeno intuire perché la costante di proporzionalità tra stress e strain è l’elastanza specifica, cioè il rapporto tra capacità funzionale residua e compliance. Possiamo quindi scrivere l’equazione nella sua forma finale: driving pressure = FRC/compliance · VT/FRC.

E qui ci fermiamo (almeno per oggi) perché ogni ulteriore approfondimento sarebbe interessantissimo, ma certamente non breve. Notiamo però che la driving pressure (una misura molto semplice) riassume in se tutti gli elementi fondamentali nella ventilazione protettiva.

Un’ultima precisazione. Quando misuriamo la pressione nelle vie aeree per calcolare compliance e driving pressure, ci riferiamo a tutto l’apparato respiratorio, tradizionalmente inteso come la somma di polmone e gabbia toracica. Se vogliamo riportare tutti questi concetti al solo polmone, invece della pressione delle vie aeree dobbiamo utilizzare la differenza tra pressione delle vie aeree e pressione esofagea.

Possiamo concludere che:

1) la scelta del volume corrente nel paziente con ARDS deve tener conto della dimensione del polmone che “accetta volentieri la ventilazione”. Questa può essere definita sia dalla capacità funzionale residua sia dalla compliance (che è simile alla percentuale di polmone rimasto normalmente aerato);

2) lo strain al momento è di difficile determinazione (bisogna misurare la capacità funzionale residua) e di vaga utilità clinica (non disponendo di valori soglia praticamente utilizzabili)

3) la driving pressure contiente in sé l’informazione dello strain, è facile da misurare e disponiamo di una possibile soglia di allarme utilizzabile nella pratica clinica (all’incirca sopra i 15 cmH2O).

Come sempre, un sorriso a tutti gli amici di ventilab.

Bibliografia

1) Gattinoni L et al. Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am Rev Respir Dis 1987;136:730-6

2) Amato MB et al. Driving pressure and survival in the acute respiratory distress syndrome. New Eng J Med 2015; 372:747-55

La PEEP nei pazienti con auto-PEEP (PEEP intrinseca) – prima parte

$
0
0

so_grecheQuanta PEEP mettere nei pazienti con auto-PEEP? La risposta che spesso si dà a questa domanda è carica di certezze: la PEEP deve essere l’80% della PEEP intrinseca.

In realtà questa affermazione è impraticabile nella pratica clinica, senza un chiaro razionale fisiopatologico e non confermata da studi clinici. Cerchiamo di capire il motivo dell’inadeguatezza di questa risposta comune e, cosa più importante, come scegliere correttamente la PEEP nei pazienti con auto-PEEP. Ricordiamo che auto-PEEP e PEEP intrinseca sono sinonimi e quindi li useremo in maniera intercambiabile. Personalmente preferisco il termine auto-PEEP a quello di PEEP intrinseca anche per sottolineare che questa PEEP non è un evento intrinsecamente presente nel paziente, ma piuttosto il frutto di una interazione tra le caratteristiche del paziente ed il suo pattern respiratorio.

Iniziamo con 3 buone ragioni per dubitare della PEEP al 80% della auto-PEEP.

1) la PEEP intrinseca non è sempre misurabile.

Mentre è facile (ma di solito poco importante) misurare la auto-PEEP nei pazienti passivi durante la ventilazione meccanica, spesso è difficile farlo quando servirebbe, cioè durante la ventilazione assistita. Purtroppo alcuni ventilatori disattivano l’occlusione di fine espirazione durante la ventilazione di supporto. Ma quando anche questa fosse disponibile, spesso non si ottiene un plateau durante l’occlusione di fine espirazione quando si rimuove la PEEP. Come vediamo nella figura 1, durante l’occlusione delle vie aeree nei pazienti attivi e senza PEEP, spesso non si ottengono dei plateau di pressione regolari e costanti.

Figura 1.

Figura 1.

In questi casi non si può fare alcuna ipotesi circa il valore di auto-PEEP, che richiede invece un plateau di pressione stabile. Ricordiamo peraltro che se entriamo nell’ottica di mettere l’80% di PEEP rispetto alla PEEP intrinseca, questa dovrebbe essere misurata ovviamente senza PEEP.

2) i pazienti non hanno UNA PEEP intrinseca.

Una prima considerazione: nei pazienti passivi il valore di PEEP intrinseca varia principalmente al variare del tempo espiratorio, delle resistenze delle vie aeree e della presenza o meno di flow limitation (1). Quindi una variazione di frequenza respiratoria/tempo inspiratorio oppure un miglioramento o peggioramento di flow limitation e broncocostrizione porteranno a diversi valori auto-PEEP nello stesso paziente, anche in tempi relativemente brevi.

Nei pazienti con attività respiratoria spontanea, la auto-PEEP può cambiare anche in funzione della presenza o meno di attività dei muscoli espiratori. In caso di espirazione attiva, infatti aumenterà il flusso espiratorio e si ridurrà quindi la PEEP intrinseca, a parità di tutti gli altri fattori. Questo evento, seppur tipico dei pazienti senza flow limitation, può accadere anche in pazienti flusso-limitati, perchè la flow limitation spesso inizia a presentarsi solo nella seconda metà dell’espirazione (vedi figura 3 del post del 25/11/2012).

Una dimostrazione eclatante di quanto sia variabile l’auto-PEEP ce la fornisce un vecchio studio che misurava la PEEP intrinseca in 35 respiri consecutivi in pazienti in ventilazione assistita-controllata. Nei pazienti con almeno 3 cmH2O di PEEP intrinseca, il valore medio di auto-PEEP era di 7 cmH2O con una deviazione standard di 4 cmH2O (2). Detto in altre parole, nello stesso paziente il valore della auto-PEEP poteva ragionevolmente variare tra 0 e 15 cmH2O (pari a due deviazioni standard dalla media), con i due terzi dei respiri che avevano una auto-PEEP compresa tra 3 e 11 cmH2O (entro una deviazione standard dalla media). E questa variazione in 35 respiri consecutivi!

E’ evidente che poichè la PEEP intrinseca varia continuamente nello stesso paziente, non ha molto senso cerca di applicare il famoso 80% di PEEP rispetto al valore di auto-PEEP: quale valore di auto-PEEP?

3) la PEEP interagisce con la auto-PEEP in maniera differente nei pazienti con e senza flow limitation.

La flow limitation a cui ci riferiamo è più precisamente la “tidal expiratory flow limitation”, cioè quella flow limitation che si manifesta durante l’espirazione del normale volume corrente. La flow limitation è una condizione che rende impossibile l’aumento del flusso espiratorio nonostante l’aumento della differenza di pressione tra i polmoni e l’apertura delle vie aeree. Al contrario di un soggetto sano, un paziente con flow limitation non aumenta il flusso espiratorio (cioè la velocità con cui il volume corrente esce dall’apparato respiratorio) nemmeno se espira forzatamente. Come, ad esempio, può succedere al nonno quando non riesce a spegnere le candeline sulla torta di compleanno: se il nonno è flusso-limitato probabilmente non riuscirà a spegnere le candeline nemmeno se soffierà più intensamente, perché comunque non potrà aumentare il flusso espiratorio.

La teoria ci dice che nei soggetti con flow-limitation, l’aggiunta di una PEEP esterna inferiore alla PEEP intrinseca non aumenta la PEEP totale (cioè la somma di PEEP esterna e auto-PEEP) (3-5). Vediamo in figura 2 una curva pressione-tempo di un soggetto senza PEEP: una insufflazione è seguita da una occlusione delle vie aeree a fine espirazione.

Figura 2.

Figura 2.

Il valore di pressione misurato durante questa occlusione è definito PEEP totale, che nell’esempio è di 10 cmH2O. In assenza di PEEP, la PEEP totale coincide ovviamente con l’auto-PEEP (che è sempre calcolata come differenza tra PEEP totale e PEEP esterna). Se ad un soggetto con flow limitation applichiamo una PEEP minore della auto-PEEP, ci aspettiamo che la PEEP totale rimanga stabile con una conseguente riduzione dell’auto-PEEP. Come possiamo ben capire da questo esempio, la PEEP intrinseca è quella parte di PEEP totale non spiegata dalla PEEP esterna. Questa condizione è riprodotta nella figura 3.

Figura 3.

Figura 3.

Dobbiamo evitare di credere che in questo caso l’applicazione della PEEP riduca l’iperinflazione, cioè il volume polmonare a fine espirazione. Infatti la PEEP totale (che stima il livello di iperinflazione) è rimasta identica: l’iperinflazione è quindi invariata. Semplicemente abbiamo scambiato una parte dell’auto-PEEP con la PEEP esterna. In questo caso si ha una riduzione del carico soglia (vedi post del 23/06/2010). Qualora il paziente fosse in ventilazione assistita o spontanea, l’applicazione di questa PEEP determinerebbe quindi un miglioramento della sincronia paziente-ventilatore ed una riduzione del carico dei muscoli respiratori.

Nei pazienti senza flow limitation però dovremmo aspettarci un comportamento completamente diverso.

Figura 4.

Figura 4.

Come si vede nella figura 4, se il paziente descritto nella figura 2 non fosse flusso-limitato, l’aggiunta della PEEP esterna pari al 80% della PEEP intriseca potrebbe fare solo guai. Infatti, in assenza di flow limitation, la fisiopatologia ci porta a concludere che tutta la PEEP applicata si somma alla preesistente auto-PEEP, aumentato la PEEP totale. La conseguenza è un aumento dell’iperinflazione a fine espirazione, con possibili effetti sfavorevoli sia respiratori che emodinamici (e senza nemmeno il vantaggio della riduzione del carico soglia).

Da quanto abbiamo visto, penso si possa comprendere perchè sia discutibile e/o impraticabile la scelta di applicare ai pazienti una PEEP esterna pari al 80% della auto-PEEP misurata a ZEEP. Al massimo questa può essere una scelta sensata solo per alcuni pazienti, sempre ammesso (e non concesso) si possa avere a disposizione un valore fisso ed attendibile di auto-PEEP.

Quindi, alla fine, come decidere ragionevolmente quanta PEEP mettere nei pazienti con PEEP intrinseca? La risposta a questa domanda è articolata, e ventilab può offrire un contributo originale per capire la scelta migliore al letto del paziente. Il post di oggi è però già abbastanza lungo, quindi tra un paio di settimane vedremo la risposta di ventilab.

Nel frattempo, come sempre, un sorriso alle migliaia di affezionati amici di ventilab.

PS: i commenti, anche tardivi, ai post sono sempre molto graditi. Chiedo solo un po’ di pazienza, non sempre mi è facile trovare il tempo per rispondere tempestivamente.

 

Bibliografia.
1) Natalini G et al. Assessment of factors related to auto-PEEP. Respir Care 2016; 61:134-41
2) Patel H et al. Variability of intrinsic positive end-expiratory pressure in patients receiving mechanical ventilation. Crit Care Med 1995; 23:1074-9
3) Marini JJ. Should PEEP be used in airflow obstruction? Am Rev Respir Dis 1989;140:1-3.
4) Tobin Mjet al. PEEP, auto-PEEP, and waterfalls. Chest 1989;96:449-51.
5) Marini JJ. Dynamic hyperinflation and auto-Positive End-Expiratory Pressure. Lessons learned over 30 Years. Am J Respir Crit Care Med 2011;184:756-62.

La PEEP nei pazienti con auto-PEEP (PEEP intrinseca) – seconda parte

$
0
0

beep-peepNel post precedente abbiamo messo in discussione l’affermazione ricorrente che “la PEEP debba essere l’80% della PEEP intrinseca”. Ora cercheremo di capire come possiamo scegliere una PEEP ragionevole nei pazienti con auto-PEEP.


Effetto della PEEP sulla PEEP totale.

Abbiamo visto che teoricamente l’applicazione di una PEEP inferiore all’auto-PEEP non dovrebbe aumentare la PEEP totale nei pazienti con flow-limitation, mentre in assenza di flow limitation la PEEP che applichiamo dovrebbe sommarsi alla pre-esistente PEEP intrinseca. Questa interpretazione, fondata su ragionevoli presupposti fisiopatologici, è proposta ed indiscussa da quasi trent’anni. Ma, abbastanza sorprendentemente, non era mai stata verificata nella clinica, cioè nessuno aveva mai misurato sistematicamente su molti pazienti con PEEP intrinseca cosa succede alla PEEP totale quando si applica una PEEP esterna inferiore (circa l’80%) all’auto-PEEP. Questo lavoro l’abbiamo allora fatto noi. Circa 3 anni fa ventilab ha promosso uno studio a cui hanno entusiasticamente partecipato 11 Terapie Intensive italiane arruolando i pazienti con PEEP intrinseca. Il disegno dello studio era molto semplice: misurare la PEEP totale quando il paziente era a ZEEP (cioè senza PEEP), applicare una PEEP uguale al 80% dell’auto-PEEP e rimisurare la PEEP totale. (Ricordiamo che la PEEP intrinseca è la differenza tra PEEP totale e la PEEP esterna; pertanto in assenza di PEEP, auto-PEEP e PEEP totale coincidono.). Ci saremmo aspettati, in teoria, due sole possibili risposte: un gruppo di pazienti avrebbe avuto la stessa PEEP totale sia senza che con la PEEP (come teorizzato nei pazienti con flow limitation), un altro gruppo di pazienti invece avrebbe dovuto aumentare la PEEP totale più o meno della stessa entità della PEEP applicata (come teorizzato in assenza di flow limitation). Queste due ipotetiche possibili risposte sono schematizzate nella figura 1 con l’esempio di un soggetto con 10 cmH2O di auto-PEEP a ZEEP: in alto l’applicazione della PEEP di 8 cmH2O non modifica la PEEP totale, mentre in basso la PEEP totale aumenta della stessa entità della PEEP applicata. Misurando la variazione della PEEP totale come percentuale della PEEP applicata, nel primo caso avremo una variazione della PEEP totale dello 0% rispetto alla PEEP esterna, mentre nel secondo caso avremo un aumento della PEEP totale pari al 100% della PEEP applicata.

Figura 1.

Figura 1.

Dopo aver raccolto ed analizzato i dati di 100 pazienti con PEEP intrinseca, ci siamo accorti che questa interpretazione della realtà non è vera. Non esiste cioè un comportamento “tutto o nulla”, che contempli solo le possibilità che la PEEP totale aumenti dello 0% o del 100% rispetto al valore della PEEP esterna, ma sono più probabili le risposte intermedie a questi due comportamenti paradigmatici: cioè un elevato numero di pazienti ha variazioni della PEEP totale che sono intermedie tra lo 0% ed il 100%, come si può vedere nell’istogramma in figura 2.

Figura 2.

Figura 2.

Tradotto in termini pratici, quando metto una PEEP di 8 cmH2O ad un paziente con PEEP intrinseca, posso aspettarmi più spesso un aumento della PEEP totale di circa il 50% della PEEP (cioè di 4 cmH2O), anche se in realtà è possibile qualsiasi aumento tra lo 0% ed il 100% (tralasciamo per semplicità i rari casi con aumento sopra il 100%, cioè con la PEEP totale che aumenta più della PEEP applicata).


Gli “assorbitori di PEEP”: cosa è necessario per evitare l’aumento della PEEP totale dopo l’applicazione della PEEP.

Questi dati possono sembrare a prima vista incompatibili con la teoria della flow limitation, che prevede solo una risposta “tutto o nulla” come abbiamo prima descritto. Vedremo in seguito perchè questa contraddizione è probabilmente solo apparente.

Ci siamo quindi chiesti se sia possibile prevedere in quale tipo di pazienti l’applicazione della PEEP non aumenta la PEEP totale. Abbiamo chiamato questi pazienti “assorbitori di PEEP”, perchè la fanno scomparire all’interno della propria auto-PEEP. L’analisi dei nostri dati ci ha indicato chiaramente che è fondamentale l’associazione di due caratteristiche per avere un paziente “assorbitore di PEEP”: una bassa frequenza respiratoria e la presenza di flow limitation. L’assenza di una di queste due caratteristiche rende pressochè impossibile essere “assorbitore di PEEP”. Nulla di nuovo sulla flow limitation, come detto già più volte. La vera novità è però la frequenza respiratoria: senza una bassa frequenza respiratoria non è possibile “assorbire” completamente la PEEP. Nel nostro campione di pazienti abbiamo identificato una frequenza respiratoria critica di 20/min: cioè una frequenza uguale o superiore a 20/min precludeva possibilità di essere “assorbitori di PEEP”, anche ai pazienti con flow limitation.

L’importanza della frequenza respiratoria è mediata ovviamente dal suo effetto sul tempo espiratorio: l’aumento della frequenza respiratoria riduce come conseguenza il tempo espiratorio. E la riduzione del tempo espiratorio genera PEEP-intrinseca con un meccanismo indipendente dalla flow limitation.


Disomogenità polmonare e risposta alla PEEP.

Dobbiamo pensare ai polmoni ammalati come ad una struttura disomogenea, dove si alternano aree con caratteristiche diverse tra loro. Tra le differenze che caratterizzano le diverse zone di un polmone patologico possiamo includere la dinamica espiratoria: in certe aeree polmonari ci saranno le condizioni perchè il l’espirazione sia flusso-limitata, mentre altre zone del polmone avranno una espirazione non flusso-limitata. In un paziente tachipnoico la PEEP intrinseca potrà generarsi, nello stesso polmone, con un duplice meccanismo: in alcune zone polmonari sarà determinata solo dalla flow-limitation, in altre zone polmonari da una espirazione incompleta dovuta ad un insufficiente tempo espiratorio. In queste diverse aree, l’effetto della PEEP sulla PEEP intrinseca sarà differente e noi potremo misurare solo un effetto medio. Figura 3Facciamo un esempio. Come presentato nella figura 3 in alto, ipotizziamo che in assenza di PEEP, vi siano due aree polmonari, una caratterizzata da flow limitation con 14 cmH2O di auto-PEEP ed una senza flow limitation con 6 cmH2O di PEEP intrinseca. Se il volume corrente fosse distributio al 50% in ciascuna delle due aree, la PEEP totale che misureremmo con l’occlusione espiratoria delle vie aeree sarebbe la media delle due, cioè 10 cmH2O. Qualora applicassimo 8 cmH2O di PEEP (pari al 80% della auto-PEEP) (figura 3, in basso), nell’area con flow limitation questa PEEP non modificherebbe la PEEP totale regionale, mentre nell’area senza flow limitation questa aumenterebbe la PEEP totale della stessa entità della PEEP applicata. Il risultato finale sarebbe che entrambe le zone a questo punto avrebbero 14 cmH2O di auto-PEEP e questa sarebbe anche la PEEP totale che misureremmo con l’occlusione di fine espirazione.

Questo modello interpretativo ci spiega come sia possibile avere aumenti della PEEP totale pari al 50% della PEEP applicata, quando in teoria ci aspetteremmo lo 0% nelle zone con flow limitation ed il 100% nelle zone senza flow limitation. Noi possiamo solo misurare il comportamento medio complessivo dei polmoni, mentre gli effetti della flow limitation possono essere solo regionali. In questo modo si possono capire i dati presentati nella figura 2.


Conclusioni ed implicazioni pratiche.

Possiamo riassumere i punti fondamentali del post:

1) l’applicazione di una PEEP esterna di poco inferiore all’auto-PEEP ha effetti molto diversi da soggetto a soggetto: in alcuni pazienti l’iperinflazione (cioè la PEEP totale) non aumenta, in altri pazienti invece aumenta di una quantità non prevedibile.
2) possiamo identificare i pazienti che non aumenteranno l’iperinflazione (“assorbitori di PEEP”) se sono contemporaneamente presenti 2 caratteristiche: flow limitation e bassa frequenza respiratoria (indicativamente sotto i 20/min)

Le implicazioni cliniche per l’applicazione della PEEP nei pazienti con auto-PEEP possono essere queste:

1) pazienti tachipnoici e/o pazienti senza flow limitation:
- qualsiasi PEEP esterna aggrava l’iperinflazione (=PEEP totale)
- quando l’aumento dell’iperinflazione rappresenta un problema (riduzione dell’efficienza dei muscoli respiratori, sovradistensione polmonare, impatto emodinamico) bisogna evitare la PEEP esterna oppure metterla al minimo ragionevole (a mio parere circa 4-5 cmH2O)

2) pazienti con flow limitation e frequenza respiratoria normale/bassa (< 20/min circa):
- è ragionevole impostare una PEEP un po’ inferiore all’auto-PEEP (in questo caso può andar bene il famoso 80%): si ha la massima riduzione del carico soglia senza i possibili effetti negativi del peggioramento dell’iperinflazione
- quando non è possibile valutare la flow limitation (NIV, ventilatore senza loop flusso-volume), possiamo ragionevolmente pensare che i pazienti con malattia polmonare cronica ostruttiva siano flusso-limitati.

Un sorriso ai tantissimi amici di ventilab.


PS: Questi dati sono presentati in anteprima assoluta ai lettori di ventilab. E’ in corso il processo di revisione per la eventuale pubblicazione: vediamo se qualcun’altro, oltre a ventilab, ritiene questi risultati interessanti…

PMI (Pressure musc,index): come stimare facilmente l’attività dei muscoli respiratori in ventilazione assistita.

$
0
0

push_and_pullOggi propongo con vero piacere il contributo offerto a ventilab da un caro amico, Gianni Ciabatti di Firenze. Gianni reintepreta in chiave originale il PMI (Pressure musc,index), cioè la differenza tra la pressione di plateau e la pressione applicata dal ventilatore in ventilazione assistita. Il PMI nasce come stima non-invasiva dello sforzo inspiratorio a fine inspirazione: a mio parere Gianni presenta una semplificazione concettuale del PMI, che ci consentirà di utilizzarlo facilmente nella pratica clinica.

Ed ora leggiamoci il post.

_°_°_°_°_°_°_°_°_°_°_°_°_

Quando iniziamo a ventilare un paziente in modalità Pressure Support Ventilation (PSV), ci troviamo ad impostare sul ventilatore una pressione di fine espirazione (PEEP) ed una pressione di supporto (PS); la pressione delle vie aeree (Paw) indica la pressione totale erogata dal ventilatore, che a fine inspirazione dovrebbe coincidere con la somma di PSV e PEEP.

In PSV il paziente può contribuire alla generazione del volume corrente utilizzando la propria muscolatura respiratoria mentre il ventilatore applica il livello di PS impostato. Definiamo Pmus la riduzione della pressione pleurica generata dai muscoli respiratori durante l’inspirazione. In altri termini, mentre il ventilatore “spinge” l’aria nei polmoni, i muscoli del paziente la “tirano dentro”.

Possiamo ora capire che in PSV la pressione generata per vincere il carico soglia (cioè la PEEP intrinseca, PEEPi), resistivo (pressione resistiva, Pres) ed elastico (pressione elastica, Pel), è prodotta in parte dal ventilatore ed in parte dal paziente. Possiamo sintetizzare tutti questi concetti nell’equazione di moto dell’apparato respiratorio (vedi post del 24/06/2011):

Paw + Pmus = PEEP + PEEPi + Pres + Pel

Per semplificare le cose, considereremo la PEEP intrinseca uguale 0. Come abbiamo già visto, la pressione delle vie aeree è, durante l’inspirazione, la somma di PSV e PEEP. NON abbiamo però idea della Pmus, cioè la pressione sviluppata dai muscoli respiratori.

La riduzione inspiratoria della pressione pleurica è stimata con la misurazione della pressione esofagea. La domanda che possiamo farci adesso è: “Senza sondino esofageo, possiamo stimare la pressione generata dalla muscolatura del paziente?”.…Probabilmente si….

Sui nostri ventilatori eseguendo una occlusione delle vie aeree alla fine della inspirazione, possiamo osservare una pressione di plateau (Pplat), anche quando il paziente è in ventilazione assistita.

PMI_attivo

In condizioni statiche (cioè in assenza di flusso), questa pressione a fine inspirazione corrisponde alla somma della PEEP applicata, e della pressione necessaria per immettere il volume corrente nell’apparato respiratorio (pressione elastica), di cui una quota è apportata dal ventilatore(PS) e una dal paziente(Pmus):

Pplat = PEEP + PS + Pmus

La differenza di pressione tra il plateau durante l’occlusione di fine inspirazione e la pressione applicata dal ventilatore (PEEP+PS), ci può fornire una stima (approssimata per difetto, vedi sotto) della pressione sviluppata dal paziente (Pmus), definita anche PMI (Pressure musc,index) (1):

PMI = Pplat – (PS + PEEP)

PMI_attivo_dettaglio

Nelle figure 1 e 2 possiamo vedere un paziente in PSV con impostati 5 cmH2O di PEEP e 7 cmH2O di PS. Durante l’occlusione di fine inspirazione, se il paziente in questa fase rilascia la muscolatura respiratoria, si può osservare un plateau di pressione. Nel caso presentato si vede un chiaro plateau di pressione di 16 cmH2O. Sappiamo che la differenza tra pressione di plateau e PEEP (totale) è la pressione elastica, che corrisponde alla pressione necessaria per immettere i 600 ml di volume corrente nell’apparato respiratorio.

Pel = Pplat – PEEP = 16 cmH2O – 5 cmH2O = 11 cmH2O

Vediamo che degli 11 cmH2O che servono per accogliere i 600 ml di volume corrente, il ventilatore ne eroga solo 7 cmH2O (PS), gli altri 4 cmH2O sono quindi stati generati dal paziente.

Questa differenza di pressione, 4 cmH2O, può quindi essere presa come una stima della pressione generata dalla muscolatura del paziente. Adesso capiamo probabilmente meglio il significato del PMI, che nel nostro esempio è:

PMI= Pplat – (PS + Peep) = 16 cmH2O – ( 5 cmH2O + 7 cmH2O ) = 4 cmH2O

PMI_passivo

In quest’altro paziente (Fig. 3) le pressioni impostate sono: PEEP 5 cmH2O, PS 10 cmH2O, ed eseguendo una pausa di fine inspirazione misuriamo 13 cmH2O di pressione di plateau.

 PMI_attivo_dettaglio

Abbiamo un livello di pressione di plateau inferiore alla somma di PEEP + PS. La nostra pressione di plateau può essere più bassa della somma (PEEP + PS) quando la pressione sviluppata dal paziente (Pmus) è inferiore alla pressione resistiva a fine inspirazione. Come abbiamo imparato nel paziente passivo, il calo di pressione dopo l’occlusione di fine inspirazione è determinato dalla perdita della pressione resistiva (vedi post del 5/12/2011). La pressione resistiva è proporzionale al flusso, quindi nelle ventilazioni pressometriche (che hanno un flusso inspiratorio discendente) essa a fine inspirazione assume valori solitamente bassi. Pertanto è nei pazienti passivi (o quasi) che riusciremo a ottenere una pressione di plateau più bassa del picco, proprio perché la Pmus è inferiore alla pressione resistiva, ed il PMI sarà negativo. Nel paziente in figura 4:

PMI = Pplat – (PS + PEEP) = 13 cmH2O – (10 cmH2O + 5 cmH2O) = -2 cmH2O

A questo punto può essere interessante una riflessione. Ricordiamoci che il vero obiettivo quando impostiamo una pressione di supporto dovrebbe essere quello di trasferire lavoro dal paziente al ventilatore. Spesso si vede nella pratica clinica (e si legge nella letteratura scientifica) che il livello di pressione di supporto è regolato sul raggiungimento di un volume corrente target, generalmente tra i 6-8 ml/kg (di peso ideale). Quanto era il volume corrente/kg nei due casi che abbiamo presentato nel post?

Il primo (Fig. 1 e 2) è un paziente maschio di 190 cm di altezza (84 kg di peso ideale), che con 7 cmH2O di pressione di supporto sviluppa 590 ml di volume corrente:

590 ml / 85 kg = 7 ml/kg

In questo paziente, osservando il ventilatore (PMI e curva di flusso) possiamo dire che con questo livello di PS abbiamo il trasferimento di una parte del lavoro respiratorio al ventilatore, con il paziente che è comunque molto attivo.

La seconda paziente (Fig. 3 e 4) è una donna alta 167 cm (58 kg di peso ideale), la quale con 10 cmH2O di pressione di supporto genera un volume corrente espiratorio di 415 ml:

415 ml / 59 kg = 7 ml/kg

In questa paziente, osservando la curva di flusso ed il PMI generato, possiamo ragionevolmente pensare ad un trasferimento quasi completo del lavoro respiratorio al ventilatore.

In sintesi, nei nostri due pazienti abbiamo impostato un livello di PS che in entrambi i casi raggiunge il target di volume corrente di 7 ml/kg peso ideale, ma con risultati molto diversi: il raggiungimento di un volume corrente target non ci dice nulla sulla ripartizione del lavoro respiratorio tra paziente e ventilatore.

Conclusioni:

  • Ventilando i pazienti in PSV (come in qualunque altra modalità di ventilazione), la pressione delle vie aeree che vediamo sul ventilatore corrisponde alla pressione erogata dal ventilatore stesso, ma non ci dice nulla sullo sforzo inspiratorio fatto dal paziente.

  • Eseguendo una pausa di fine inspirazione si può osservare una pressione di plateau: sottraendo ad essa PEEP e pressione di supporto inspiratoria, otteniamo una stima (per difetto) di una parte della pressione generata dai muscoli respiratori;

  • Impostare una pressione di supporto avendo un obiettivo di volume corrente (in ml/kg di peso ideale) non fornisce indicazioni sulla quota di lavoro respiratorio che resta a carico del paziente. In pressione di supporto questo può apparire paradossale, se consideriamo che il principale obiettivo di questa modalità di ventilazione è proprio la riduzione del lavoro respiratorio del paziente.

  • Durante la ventilazione in pressione di supporto (come nelle altre modalità di ventilazione), il livello di pressione alveolare a fine inspirazione (quello rilevato durante il plateau) può essere superiore alla pressione applicata dal ventilatore: potrebbero pertanto esserci pazienti a rischio di VILI nonostante rassicuranti valori di pressione delle vie aeree.

Bibliografia.

1) Foti G et al. End-inspiratory airway occlusion: a method to assess the pressure developed by inspiratory muscles in patients with acute lung injury undergoing pressure support. Am J Respir Crit Care Med 1997;156:1210–1216.

_°_°_°_°_°_°_°_°_°_°_°_°_

Grazie Gianni!

Costante di tempo dell’apparato respiratorio

$
0
0

disequilibriumIl concetto di costante di tempo è affascinate ed ostico al tempo stesso. Come è nello stile di ventilab, cercheremo di rendere la costante di tempo facilmente accessibile e pratica, senza per questo toglierle nulla del suo fascino. Per fare questo, iniziamo prima a capire cosa si intende per costante di tempo dell’apparato respiratorio, quindi come utilizzare questo concetto durante la ventilazione meccanica. (Ho specificato che parleremo della costante di tempo dell’apparato respiratorio, perchè la costante di tempo non è esclusiva dell’apparato respiratorio ma è una caratteristica comune a tutti i processi con una cinetica esponenziale)

La costante di tempo descrive il tempo necessario e sufficiente per ottenere il 63% della variazione di volume dell’apparato respiratorio quando gli si applica una pressione di insufflazione costante o quando si ha una espirazione passiva. L’unità di misura della costante di tempo sono i secondi.

Figura 1

Figura 1

Facciamo un esempio per comprendere meglio cosa significa e quali sono i fattori che governano la costante di tempo (figura 1). Immaginiamo di avere un soggetto che ha terminato l’espirazione ed ha raggiunto la capacità funzionale residua. In quel momento nei suoi alveoli c’è una pressione pari a quella atmosferica, cioè 0 cmH2O. Applichiamo ora una pressione positiva continua all’apertura delle vie aeree, ad esempio di 20 cmH2O. La differenza di pressione tra ventilatore ed alveoli genera un flusso di gas, che va dal ventilatore (dove la pressione è più alta) agli alveoli (dove la pressione è più bassa). In questo modo i polmoni si riempiono di gas, aumentano il proprio volume ed inevitabilmente aumenta anche la pressione al loro interno. L’aumento di volume e pressione polmonare termina quando la pressione alveolare diventa uguale a quella applicata alle vie aeree, che nel nostro esempio corrisponde a 20 cmH2O. Di che entità deve essere l’aumento del volume polmonare per fare aumentare la pressione da 0 a 20 cmH2O? Ammettiamo che il soggetto in questione abbia una compliance di 100 ml/cmH2O. Questo significa che il volume polmonare aumenterà di 100 ml per ogni incremento di pressione di 1 cmH2O. A questo punto il calcolo è semplice: dopo l’applicazione di 20 cmH2O, il volume polmonare sarà aumentato di 20 volte la compliance, cioè di 2000 ml. Poichè la costante di tempo è il tempo necessario e sufficiente a far aumentare il volume dell’apparato respiratorio del 63% rispetto alla variazione finale, nel nostro esempio coincide con il tempo necessario per aumentare il volume dell’apparato respiratorio di 1260 ml.

Il tempo per raggiungere questa variazione di volume dipende dalla velocità con la quale il volume di gas si muove verso i polmoni, cioè dal flusso inspiratorio. Poichè il flusso dipende dalla resistenza (flusso= differenza di pressione/resistenza), tanto maggiore è la resistenza, tanto maggiore il tempo per ottenere la variazione di volume, cioè la costante di tempo.

Da quanto abbiamo detto è anche vero che tanto maggiore è la compliance, tanto maggiore la variazione di volume e quindi (a parità di resistenza) il tempo necessario per raggiungere il 63% di essa (cioè la costante di tempo). 

Figura 2

Figura 2

Vediamo ora la costante di tempo applicata all’espirazione. Il volume corrente inspirato (di qualsiasi entità esso sia) genera una pressione alveolare definita dal suo rapporto con la compliance. Siamo abituati a vedere questa pressione come la pressione di fine inspirazione, ma evidentemente la possiamo anche considerare la pressione di inizio espirazione, cioè la pressione alveolare a cui inizia la fase espiratoria. Facciamo l’esempio di un soggetto che ha compliance di 80 ml/cmH2O ed un volume corrente di 400 ml (figura 2). Come abbiamo visto in precedenza, la compliance descrive la variazione di volume associata ad una variazione di pressione di 1 cmH2O. Quindi, 400 ml di variazione di volume in un soggetto con 80 ml/cmH2O di compliance richiedono una variazione di pressione di 5 cmH2O (cioè volume/compliance). La pressione alveolare di inizio espirazione in questo caso sarà di 5 cmH2O (sopra PEEP) e rappresenta la forza che inizialmente “spinge” il flusso espiratorio. Più è alta la compliance, minore la pressione di inizio espirazione, minore la forza per “spingere” l’aria fuori dai polmoni, più lungo il tempo che serve per espirare il 63% del volume corrente, cioè la costante di tempo. Anche in questo caso un aumento della resistenza riduce il flusso espiratorio e quindi, a parità di compliance, aumenta la costante di tempo.

Risulta ora chiaro perchè la costante di tempo (normalmente definita dalla lettera greca τ, tau) dipenda esclusivamente da compliance (C) e resistenza (R), a tal punto da poter essere calcolata dal loro prodotto:

τ = C R

La costante di tempo è caratteristica di ogni singolo apparato respiratorio, indipendente dalla pressione applicata in inspirazione o dal volume espirato. Dopo 1 costante di tempo come abbiamo visto si raggiunge il 63% della variazione di volume all’equilibrio, dopo 3 costanti di tempo il 95% e dopo 5 costanti di tempo il 99%.

Nella pratica clinica non ci serve tanto sapere di quanti secondi è la costante di tempo di un paziente, ma piuttosto ci è utile una semplice valutazione qualitativa che ci dica se il paziente ha una costante di tempo “lunga” o “breve”, cioè se l’apparato respiratorio “si riempie” e “si svuota” lentamente (τ lunga) o velocemente (τ breve). E se questo processo si svolge in modo omogeneo all’interno dei polmoni.

Impariamo ora a riconoscere i pazienti con costante di tempo “breve” o “lunga”. Una premessa indispensabile: “breve” o “lungo” rispetto a cosa? Da un punto di vista clinico ritengo che il tempo inspiratorio ed il tempo espiratorio siano validi termini di riferimento per la definizione del concetto di “breve” o “lunga” riferito alla costante di tempo inspiratoria ed espiratoria. Una seconda premessa fondamentale è che la costante di tempo descrive solo fenomeni passivi e che quindi può essere valutata solo se il paziente inspira ed espira passivamente.

In inspirazione, la costante di tempo può essere valutata solo nelle ventilazioni pressometriche, anche a target di volume, poichè garantiscono una pressione di insufflazione costante.

I soggetti con costante di tempo “breve” hanno un flusso inspiratorio rapidamente decrescente che si conclude con una fase di zero flusso al termine della inspirazione. In espirazione, la costante di tempo può essere valutata indipendentemente dalla modalità di ventilazione e, come in inspirazione, i soggetti con costante di tempo “breve” hanno un flusso rapidamente decrescente che si azzera facilmente prima dell’inizio dell’inspirazione successiva (ad eccezione dei soggetti con tempo espiratorio molto breve) (Figura 3).

Figura 3

Figura 3

Nei soggetti con costante di tempo “lunga” invece il flusso inspiratorio (in ventilazione pressometrica) ed il flusso espiratorio decrescono lentamente, a tal punto che alla fine dell’inspirazione e dell’espirazione il flusso non si è azzerato (figura 4).

Figura 4

Figura 4

In pazienti con costante di tempo eccezionalmente lunga, il flusso inspiratorio in pressione controllata si riduce talmente lentamente da sembrare costante invece che decrescente, tanto da avere l’apparente paradosso di una ventilazione con onda quadra sia di flusso che di pressione (figura 5). Immagini come queste sono rare e ringrazio l’amico Guido Amodeo del S. Giovanni Bosco di Napoli per averla saputa cogliere, capire ed averla condivisa con me.

Figura 5

Figura 5

Per oggi mi fermo qui, abbiamo già messo molta carne al fuoco. Nel prossimo post cercheremo di capire insieme le implicazioni cliniche delle costanti di tempo nei pazienti sottoposti a ventilazione meccanica.

Come sempre, un sorriso a tutti gli amici di ventilab. E buone vacanze!

 

Costante di tempo e ventilazione a pressione controllata.

$
0
0

mario-santonastaso-pippoDopo aver delineato alcuni concetti teorici sulla costante di tempo dell’apparato respiratorio (vedi post del 30/06/2016), iniziamo a considerare una prima implicazione pratica.

Consideriamo due soggetti, Mario e Pippo, con una moderata ipertensione intracranica secondaria ad un trauma cranico. Mario e Pippo sono accomunati anche dalla sfortuna di avere avuto una ARDS secondaria ad aspirazione polmonare prima dell’intubazione. La differenza è che Mario non ha malattie polmonari croniche, mentre Pippo ha una broncopneumopatia cronica ostruttiva associata ad un enfisema polmonare. In termini di costante di tempo, Mario ha una costante di tempo breve (ha la bassa compliance e resistenze dell’apparato respiratorio lievemente aumentate, profilo tipico della ARDS), mentre Pippo ha una costante di tempo lunga (compliance più elevata di Mario per l’enfisema e resistenze marcatamente aumentate rispetto al normale).

Entrambi hanno la stessa impostazione della ventilazione meccanica: una pressione controllata di 17 cmH2O (sopra PEEP), PEEP di 10 cmH2O, frequenza respiratoria di 20/min e rapporto I:E di 1:1 (cioè l’inspirazione ha una durata pari all’espirazione).

Nella figura 1 vediamo le immagini di 10 secondi di monitoraggio grafico dei due pazienti. Dopo aver letto il post precedente, riconosciamo subito che il monitoraggio a sinistra è di Mario (il flusso, la traccia rossa, si riduce rapidamente fino ad azzerarrsi, quindi la costante di tempo è “breve”), mentre quello di destra è di Pippo (il flusso si riduce lentamente e non si azzera mai, quindi costante di tempolunga”).

Figura 1

Figura 1

Sia Mario che Pippo ottengono lo stesso volume corrente di circa 420 ml e quindi una identica ventilazione minuto di 8.4 litri. Ed entrambi sono ugualmente ipercapnici (PaCO2 55 mmHg). In considerazione della moderata ipertensione intracranica, si rende opportuno aumentare la ventilazione minuto per ridurre la PaCO2. Avendo i pazienti una ARDS, si preferisce aumentare la frequenza respiratoria piuttosto che il volume corrente. Pertanto in entrambi i casi la frequenza respiratoria è aumentata da 20/min a 30/min. Ci aspettiamo la stessa riduzione di PaCO2? Ovviamente no, per “colpa” della costante di tempo: con questa identica modificazione della ventilazione, la PaCO2 di Mario si riduce a 38 mmHg, mentre quella di Pippo a 51 mmHg.

L’aumento della frequenza respiratoria riduce sia in Mario che in Pippo la durata del ciclo respiratorio, da 3 a 2 secondi. (La durata del ciclo respiratorio si calcola semplicemente suddividendo i 60 secondi di cui è composto un minuto per la frequenza respiratoria, cioè il numero di atti respiratori in 1 minuto). Essendo il rapporto I:E=1:1, sia il tempo inspiratorio che quello espiratorio si riducono quindi da 1,5 secondi a 1 secondo.

Nella figura 2 possiamo valutare come cambiano le curve del monitoraggio grafico di Mario, quello con la costante di tempo “breve: a sinistra il monitoraggio con 20/min di frequenza respiratoria, a destra con la frequenza respiratoria aumentata a 30/min.

Figura 2

Figura 2

Osserviamo la traccia rossa del flusso. La riduzione del tempo inspiratorio (conseguente all’aumento della frequenza respiratoria) non impedisce che il flusso raggiunga lo zero a fine inspirazione (immagine a destra). Rispetto alla condizione con 20/min di frequenza respiratoria (immagine a sinistra) si è eliminata una fase in cui il flusso si manteneva sempre a zero (area evidenziata). Il flusso va visto come la velocità con cui il volume di gas entra nei polmoni: dal momento in cui questa velocità diventa zero, non vi è ovviamente più alcuna variazione di volume dell’apparato respiratorio. Quindi con l’aumento di frequenza respiratoria è rimasto costante il volume corrente, pertanto la ventilazione minuto è passata da 8.4 a 12.6 litri/min e la PaCO2 si è ridotta efficacemente da 55 a 38 mmHg.

Vediamo ora nella figura 3 il caso di Pippo, quello con la costante di tempo “lunga. A sinistra il moniraggio con 20/min di frequenza respiratoria, a destra la frequenza aumentata a 30/min.

Figura 3

Figura 3

L’aumento della frequenza respiratoria e la consensuale riduzione del tempo inspiratorio determinano la riduzione del volume corrente perché eliminano una fase dell’inspirazione in cui è ancora presente flusso, quindi passaggio di gas nei polmoni (area evidenziata).

Un secondo meccanismo contribuisce a ridurre il volume corrente: l’aumento dell’autoPEEP. Come il tempo inspiratorio, anche il tempo espiratorio si riduce. Pippo già con la frequenza respiratoria di 20/min aveva segni di espirazione interrotta precocemente (il flusso espiratorio non arriva allo zero all’inizio dell’inspirazione successiva) ed aveva una PEEP intrinseca di 3 cmH2O. Avendo una PEEP di 10 cmH2O, la sua PEEP totale (la somma di PEEP e autoPEEP) è quindi di 13 cmH2O. Ricordiamo che la PEEP totale è la pressione presente nell’apparato respiratorio all’inizio dell’inspirazione. La pressione che genera flusso (e volume) ad inizio inspirazione è la differenza tra la pressione nel ventilatore e quella nell’apparato respiratorio ad inizio inspirazione. Quando Pippo ha 20/min di frequenza respiratoria, questa pressione è di 14 cmH2O: 27 cmH2O è la pressione applicata dal ventilatore durante la fase inspiratoria (la somma di pressione controllata e PEEP) a cui si devono sottrarre i 13 cmH2O di PEEP totale. In altre parole 14 cmH2O spingono l’aria nei polmoni di Pippo ad inizio inspirazione. Quando la frequenza respiratoria aumenta a 30/min, la riduzione del tempo espiratorio determina una più precoce interruzione del flusso a fine espirazione (freccia nera tratteggiata) e quindi un aumento dell’autoPEEP, che nel nostro esempio diventa di 5 cmH2O, con una conseguente PEEP totale di 15 cmH2O. In questa condizione la differenza di pressione che genera il flusso diventa 12 cmH2O (27 cmH2O di pressione applicata dal ventilatore meno 15 cmH2O di PEEP totale) invece dei 14 cmH2O che avevamo calcolato con la frequenza respiratoria di 20/min: meno differenza di pressione, meno flusso, meno volume corrente.

Per l’effetto combinato di interruzione del flusso inspiratorio ed aumento della PEEP intrinseca, l’aumento della frequenza respiratoria da 20/min a 30/min si associa in Pippo ad una riduzione del volume corrente da 420 a 300 ml. In questo modo la ventilazione minuto aumenta molto poco, da 8.4 l/min a 9 l/min (ricordiamo che Mario aveva invece aumentato la ventilazione minuto a 12,6 l/min). Questo piccolo aumento della ventilazione è la causa della minima riduzione della PaCO2 di Pippo.

Cosa dobbiamo fare per risolvere il problema di Pippo ed abbassare la PaCO2 della stessa entità di quella di Mario? Dobbiamo inevitabilmente aumentare la pressione inspiratoria per ripristinare il volume corrente al valore iniziale. Nel nostro esempio dobbiamo arrivare a 22 cmH2O di pressione controllata sopra PEEP per tornare al volume corrente di 420 ml e quindi conseguire in Pippo lo stesso aumento di ventilazione (e quindi la stessa riduzione di PaCO2) di Mario (figura 4).

Figura 4

Figura 4

In questo post abbiamo discusso solo una delle molte implicazioni della costante di tempo nella pratica clinica. Per oggi mi sembra che basti. In futuro, riprenderemo l’argomento per riflettere su altri importanti ed interessanti fenomeni condizionati dalle costanti di tempo.

Proviamo a sintetizzare i punti salienti del post di oggi:

  1. la presenza o meno di una fase di zero flusso a fine inspirazione in ventilazione pressometrica controllata dipende dalla costante di tempo;
  2. in ventilazione a pressione controllata, se non si azzerano il flusso a fine inspirazione e/o a fine espirazione, le variazioni di frequenza respiratoria (e/o del rapporto I:E) possono determinare variazioni imprevedibili del volume corrente anche se si mantiene una pressione di insufflazione costante;
  3. quando si osserva una variazione indesiderata del volume corrente, questa può essere corretta modificando la pressione controllata impostata.

Un sorriso a tutti gli amici di ventilab.

 

PS: monitoraggio e valori di flusso, pressione, volume, autoPEEP e PaCO2 nelle varie condizioni analizzate nel post sono stati ottenuti utilizzando un modello matematico.


Come scegliere il livello di pressione di supporto.

$
0
0

TotoLa ventilazione con pressione di supporto (Pressure Support Ventilation) è una delle modalità di ventilazione assistita più frequentemente utilizzate in Europa. Il motivo del grande successo di questa modalità di ventilazione è dovuto sia alla sua efficacia che alla sua semplicità di impostazione. Tutte e due queste caratteristiche però nascondono dei tranelli. L’efficacia della ventilazione con pressione di supporto è infatti da verificare caso per caso e la semplicità di impostazione può divetare un tranello.

Spesso è suggerito di impostare il livello di pressione di supporto per ottenere un obiettivo di volume corrente (as esempio di 6-8 ml/kg di peso ideale) e di frequenza respiratoria (ad esempio < 25/min). E’ davvero sufficiente questo per impostare correttamente la pressione di supporto? (la pressione di supporto in alcuni ventilatori è denominata ΔASB, in altri ancora è la differenza tra IPAP ed EPAP)

Alcuni giorni fa avevamo in reparto un paziente il cui peso ideale era stimato in 70 kg. Abbiamo modificato il livello di pressione di supporto per scegliere quello a lui più appropriato. Con tre diversi livelli di pressione di supporto (5, 10 e 12 cmH2O), il volume corrente rimaneva sostanzialmente costante (tra i 450 ed i 500 ml), mentre la frequenza respiratoria si riduceva lievemente con l’incremento della pressione di supporto (23/min, 21/min e 18/min). Quale livello di pressione di supporto scegliere? Gli obiettivi di volume e di frequenza respiratoria sono raggiunti con tutte e tre le impostazioni… Lasciamo la scelta al caso e/o all’istinto?

Fortunatamente abbiamo un elemento preziosissimo per scegliere accuratamente il livello di pressione di supporto: il monitoraggio grafico della ventilazione meccanica. Nella scelta del livello di pressione di supporto, ritengo che la curva più importante da valutare sia quella flusso-tempo. Nella figura 1 vediamo l’onda di flusso con 12 cmH2O di pressione di supporto.

Figura 1

Figura 1

La ventilazione in pressione di supporto è una ventilazione pressometrica. Abbiamo ormai imparato che le ventilazioni pressometriche nei pazienti passivi (come ad esempio la ventilazione a pressione controllata) sono caratterizzate da un flusso inspiratorio decrescente (ad esempio vedi post del 27/11/2011). Nella figura 1 il flusso inspiratorio è indicato dalla parte di onda al di sopra dello zero. Nella parte iniziale dell’inspirazione il flusso raggiunge il picco, che successivamente decresce linearmente (linea gialla tratteggiata) fino al punto in cui il flusso inspiratorio “crolla” verso lo zero. [Questo punto coincide con il raggiungimento del trigger espiratorio, che come sappiamo è definito da una percentuale di flusso rispetto al picco iniziale. In questo caso abbiamo un picco di flusso di circa 50 L/min ed il trigger espiratorio si attiva a circa 15 L/min: possiamo quindi supporre che il trigger espiratorio sia stato impostato a circa il 33% (cioè 50 L/min / 15 L/min 100).] Il flusso non è mai superiore alla linea ideale che congiunge il picco di flusso al flusso-trigger espiratorio: è una condizione simile a quella della pressione controllata con paziente passivo (trascuriamo il fatto che in questa condizione il flusso decreace esponenzialmente e non linearmente). Possiamo quindi dedurre che il paziente, dopo l’attivazione del trigger, è sostanzialmente passivo.

Nella figura 2 vediamo la curva di flusso con 10 cmH2O di pressione di supporto.

Figura 2

Figura 2

Rispetto al condizione precedente, la riduzione di pressione di supporto è minima. Frequenza respiratoria e volume corrente sono simili a quanto abbiamo ottenuto con 12 cmH2O. Ma la morfologia del flusso inspiratorio si modifica in maniera sostanziale: una parte del flusso inspiratorio si mantiene al di sopra della linea ideale che congiunge il picco di flusso al flusso-trigger espiratorio. Un aspetto diverso da quello delle ventilazioni pressometriche a paziente passivo. Questa informazione è utile per indicare che i muscoli inspiratori continuano a “lavorare” anche dopo l’attivazione del trigger.

La figura 3 mostra la curva di flusso con 5 cmH2O di pressione di supporto.

Figura 3

Figura 3

A questo punto possiamo facilmente vedere come il flusso sia marcatamente aumentato rispetto alla linea ideale di decadimento passivo. E concludere che il soggetto in questo caso mette in gioco una rilevante attivazione dei muscoli inspiratori. Come si può vedere nella figura 3, è molto difficile (o impossibile) identificare il flusso a cui si attiva il trigger espiratorio quando il paziente è molto attivo ed il flusso inspiratorio diventa sinusoidale. Possiamo sfruttare questa condizione a nostro vantaggio: il paziente “lavora molto” se non si riconosce sulla onda di flusso il punto in cui si attiva il trigger espiratorio.

Rivediamo nella figura 4, messe insieme, le curve che abbiamo analizzato finora. A questo punto penso che un colpo d’occhio sia sufficiente per capire il differente livello di attività dei muscoli inspiratori nelle tre impostazioni della pressione di supporto. Uno sguardo a questo punto vale più di mille parole.

Figura 4

Figura 4

Ora la domanda è spontanea: quale livello di pressione di supporto scegliere? Questo dipende dagli obiettivi clinici che abbiamo nel momento in cui dobbiamo decidere. Se il nostro obiettivo è quello di far riposare un paziente affaticato (ad esempio dopo il fallimento di un trial di respiro spontaneo), meglio scegliere di mettere a riposo per un po’ di tempo i muscoli inspiratori. Viceversa, se il paziente non presenta dispnea o altri segni clinici che rendano opportuno il riposo, meglio scegliere un livello di pressione di supporto che assicuri una significativa attivazione dei muscoli inspiratori durante l’inspirazione. E magari procedere rapidamente al weaning…

Nel paziente che ho presentato, è stato scelta una pressione di supporto di 10 cmH2O, poiché con livelli più bassi lamentava dispnea. Abbiamo però evitato i 12 cmH2O, perche con questo livello tendeva ad essere inutilmente passivo durante la ventilazione assistita: 2 cmH2O sono un’inezia, ma in qualche caso potrebbero fare la differenza per accelerare il weaning…

In conclusione, riassumiamo brevemente i punti salienti del post di oggi:

1) durante pressione di supporto, la valutazione di frequenza respiratoria e volume corrente è insufficiente per una scelta appropriata dell’assistenza inspirtoria;

2) una semplice analisi della curva di flusso può aiutarci nella scelta: tanto meno il flusso è decrescente, tanto più attivo è il paziente;

3) si deve ricercare una bassa attività del paziente se l’obiettivo clinico è il riposo (quindi se si rilevano segni o sintomi di “fatica”), mentre in tutti gli altri casi è opportuno mantenere una significativa attività muscolare (fino al punto in cui può essere tollerata).

 

Un sorriso a tutti gli amici di ventilab.

Il lavoro respiratorio

$
0
0

iceberg1La ventilazione meccanica ha due componenti pressorie principali: la PEEP ed il supporto inspiratorio (figura 1).

Figura 1

Figura 1

La PEEP ha una funzione statica che contribuisce a definire il volume minimo dell’apparato respiratorio, che viene raggiunto alla fine dell’espirazione. Il supporto inspiratorio è la pressione applicata sopra la PEEP e contribuisce alla genesi del volume corrente. Il supporto inspiratorio è alla base del lavoro respiratorio del ventilatore, un dato di scarsissimo interesse clinico. Infatti siamo solitamente interessati al lavoro respiratorio dei muscoli respiratori.

Vediamo l’esempio in figura 2.

Figura 2

Figura 2

A sinistra vediamo un soggetto che respira senza supporto inspiratorio (la linea tratteggiata bianca, che identifica la pressione inspiratoria, è allo stesso livello della PEEP), a destra invece lo stesso soggetto con 8 cmH2O di supporto inspiratorio (la linea tratteggiata bianca è più alta di 8 cmH2O rispetto alla PEEP). Notiamo che il volume corrente raggiunto nei due casi è costante (linea tratteggiata rossa sulla terza traccia). Non abbiamo difficoltà a capire che nello stesso paziente il lavoro respiratorio sia costante tra un respiro e l’altro se resta costante il volume corrente. Nelle due condizioni della figura 2 possiamo quindi ritenere che il lavoro respiratorio totale sia rimasto costante nelle due condizioni: a sinistra tutto il lavoro respiratorio è “occulto” ed è a carico del paziente; a destra vediamo anche il lavoro respiratorio del ventilatore (la pressione che si alza in inspirazione) e nulla sappiamo del lavoro respiratorio residuo rimasto a carico del paziente. Il lavoro respiratorio del paziente, invisibile al monitoraggio di base, è rilevabile solo con il monitoraggio della pressione esofagea, che stima la pressione sviluppata dai muscoli inspiratori. In altre parole, la pressione delle vie aeree nei soggetti in ventilazione assistita rappresente la punta dell’iceberg, la quota di pressione che emerge dal livello del mare (cioè dal livello di PEEP). Ma sotto questo livello possono esistere pressioni negative intrapleuriche talora nettamente superiori a quella positiva nelle vie aeree.

A titolo di esempio, guardiamo la figura 3.

Figura 3

Figura 3

Nella traccia superiore è rappresentato l’aumento della pressione delle vie aeree nella fase inspiratoria (attività del ventilatore), la secondra traccia è la concomitante caduta di pressione esofagea (attività del paziente), la terza il volume progressivamente inspirato.

Lavoro respiratorio e Pressure-Time Product.

Veniamo ora al lavoro respiratorio (Work of Breathing, WoB). Fino ad ora ne abbiamo parlato in termini vaghi, utilizzando questo termine per quantificare genericamente lo sforzo inspiratorio del paziente. In realtà il lavoro dal punto di vista fisico esprime un concetto ben preciso. Ricordiamo forse tutti che in fisica

L = F · s              (1)

cioè il lavoro L è il prodotto della forza F per lo spostamento s. Quindi esiste lavoro quando l’applicazione di una forza produce un movimento. Questo in un sistema lineare. Possiamo scrivere l’equazione del lavoro anche in questo modo:

L = F/cm2 · (s·cm2)       (2)

Abbiamo diviso la forza per una superficie (cm2) e moltiplicato lo spostamento per una superficie: semplificando i cm2, si può tornare facilmete all’equazione 1. E’ però utile questo semplice passaggio per capire cosa è il lavoro respiratorio. Infatti la forza applicata su una superficie (F/cm2) altro non è che una pressione P, ed il prodotto di un’area per una lunghezza (s.cm2) altro non è che un volume V:

L = P · V        (3)

Quindi il lavoro respiratorio è anche definito dal volume generato dall’applicazione di una pressione e la sua unità di misura è il joule (0.1 joule equivale a 1 litro per cmH2O). Lasciamo stare a questo punto matematica ed integrali, e passiamo ad una più intuitiva visualizzazione grafica del lavoro respiratorio.

Graficamente il lavoro respiratorio può essere espresso dal grafico pressione esofagea-volume (figura 4).

Figura 4

Figura 4

Il punto di inizio di questo grafico (punto A) è identificato da pressione e volume di fine espirazione. Nella figura 4 la pressione di fine espirazione è -5 cmH2O ed il volume coincide con la capacità funzionale residua (FRC). L’inspirazione procede con la progressiva riduzione della pressione pleurica (esofagea), ed ogni sua riduzione si associa ad un aumento del volume, relazione descritta dalla curva rossa che arriva al punto B, che conclude l’inspirazione.

L’area compresa entro la linea rossa povrebbe rappresentare il lavoro respiratorio, descrivendo le variazioni di volume derivate dalla variazione di pressione. Il mio parere assolutamente personale è che in effetti questa area possa da sola sufficientemente rappresentare il lavoro respiratorio. Ma la fisiologia ci complica un po’ la vita, e ci dice che il lavoro respiratorio totale in realtà deve comprendere anche l’area compresa tra la variazione di volume e la relazione statica pressione volume della gabbia toracica (linea verde tratteggiata). Non entro ora nel merito del significato del contributo della compliance della gabbia toracica sul lavoro respiratorio: se qualcuno sarà interessato, ne potremo discutere nei commenti al post. Il lavoro respiratorio viene normalmente espresso in lavoro per litro di ventilazione (WoB/L) o per minuto di ventilazione (WoB/min o Power of Breathing, PoB). Queste indicizzazioni però sono discutibili perché non consentono di confrontare il lavoro respiratorio ottenuto a diversi livelli di volume corrente (1,2). Per questi motivi trovo siano del tutto privi di razionale eventuali valori “normali” di lavoro respiratorio.

Il Pressure-Time Product (PTP) è una valida alternativa al lavoro respiratorio per quantificare l’attività dei muscoli inspiratori. Il Pressure-Time Product (si chiama così anche in italiano) è l’area identificata dalla deflessione inspiratoria della pressione esofagea nel tempo (figura 5):

Figura 5

Figura 5

tanto maggiore e tanto prolungata è la riduzione inspiratoria della pressione esofagea, tanto maggiore il Pressure-Time Product. Nella figura 5 il PTP è identificato dall’area tratteggiata obliqua, che inizia dela punto A (inizio inspirazione) e termina al punto B (fine inspirazione). Questo, a mio parere, potrebbe bastare, ma anche in questo caso, come nel lavoro respiratorio, si aggiunge una ulteriore area (quella con i puntini) che è delimitata in alto dalla pressione elastica della gabbia toracica (anche qui approfondiremo se sarà chiesto nei commenti). Il Pressure-Time Product si calcola per minuto di ventilazione, quindi si devono sommare tutti i PTP di un minuto per avere il suo valore. L’unità di misura sono quindi i cmH2O.s-1.min.

Utilizzo clinico di pressione esofagea, lavoro respiratorio e Pressure-Time Product.

La valutazione della pressione esofagea dovrebbe essere un elemento fondamentale durante la ventilazione assistita, soprattutto durante la ventilazione a pressione di supporto. Infatti scegliamo il supporto inspiratorio proprio per ridurre l’attività dei muscoli inspiratori. L’entità dell’attività dei muscoli respiratori è misurata con la riduzione che essi generano della pressione esofagea. Senza valutare la pressione esofagea non possiamo sapere di quanto stiamo “scaricando” di lavoro i muscoli inspiratori. Questa misurazione è probabilmente irrilivante nei soggetti che offrono poche problematiche ventilatorie, ma può diventare decisiva nei pazienti più complessi. Ricordiamo il concetto della punta dell’iceberg: la pressione applicata dal ventilatore (quella che vediamo sul monitoraggio pressorio del ventilatore) è solo la parte visibile della pressione che genera flusso e volume inspiratori; l’altra parte, quella sommersa, è invisibile al comune monitoraggio e dovrebbe costituire il criterio principale su cui dosare l’entità del supporto inspiratorio.

E’ sufficiente misurare la deflessione inspiratoria della pressione esofagea per quantificare questa attività oppure abbiamo bisogno di calcoli più complessi, come lavoro respiratorio o Pressure-Time Product?

Ritengo che, nella pratica clinica, lavoro respiratorio o PTP non aggiungano nulla all’informazione che ci offre la semplice rilevazione del calo inspiratorio della pressione esofagea (unita alla valutazione qualitativa della curva della pressione esofagea-tempo). Anzi, probabilmente esistono delle distorsioni matematiche possono complicare l’utilizzo di lavoro respiratorio e PTP (1-3).

_°_°_°_

Possiamo ora riassumere i punti salienti del post:

– l’attività dei muscoli respiratori (il loro “lavoro”) diventa visibile solo con la rilevazione della pressione esofagea;

– il livello di attività dei muscoli inspiratori può essere stimato dalla semplice misurazione della riduzione inspiratoria della pressione esofagea, dal lavoro respiratorio (area compresa tra pressione esofagea e volume) o dal Pressure-Time Product (area delimitata dalla variazione inspiratoria della pressione esofagea nel tempo);

a livello clinico, la semplice misurazione della deflessione inspiratoria della pressione esofagea può essere preferibile agli altri indici più complessi.

Un sorriso a tutti gli amici di ventilab.

 

Bibliografia.

  1. Natalini G et al. Analysis of the work of breathing-tidal volume relationship in a vitro model and clinical implications. J Clin Monit Comput 1999;15:119-23
  2. Natalini G et al. Effect of tidal volume and respiratory rate on the power of breathing calculation Acta Anaesthesiol Scand 2005; 49: 643-8
  3. Natalini G et al. Effect of breathing pattern on the pressure-time product calculation. Acta Anaesthesiol Scand 2004; 48: 642-7

AutoPEEP in anestesia: come misurare la PEEP intrinseca senza manovra di occlusione.

$
0
0

alan_ford

Recentemente, mentre ero l’anestesista della sala operatoria di neurochirurgia (l’amore per l’anestesia non finisce mai…), arriva in urgenza Ivan, un paziente con trauma cranico e toracico. Deve evacuare in emergenza un ematoma sottodurale che determina un marcato effetto massa. Il trauma toracico, da parte sua, ha causato una ARDS lieve. Bisogna quindi rispettare i fondamenti della ventilazione protettiva ed al contempo mantenere il controllo della PaCO2. Ho scelto una ventilazione a volume controllato con un volume corrente di 6-7 ml/kg di peso ideale (Ivan mi sembra alto circa 180 cm) ed ho inserito una breve pausa inspiratoria su ogni atto respiratorio. La frequenza respiratoria è stata impostata a 25/min, tenendo conto della necessità di eliminare CO2 in una sindrome (l’ARDS) con un elevato spazio morto (una successiva emogasanalisi arteriosa mostrerà infatti una PaCO2 di 35 mmHg). E’ stata poi scelta una diplomatica PEEP di 5 cmH2O, un compromesso tra ipossiema moderata, ipertensione endocranica ed ipotensione trattata con norepinefrina ed espansione volemica.

Questa il risultato al monitoraggio grafico:

autoPEEP_frequenza _respiratoria_25

Figura 1

E’ evidente chiaramente sulla traccia di flusso (quella verde in figura 1) che il flusso espiratorio viene bruscamente troncato a fine espirazione, segno di autoPEEP (o PEEP intrinseca, che dir si voglia). Ma quanti cmH2O di PEEP intrinseca ha Ivan? In Terapia Intensiva questa domanda avrebbe una facile risposta con la manovra di occlusione espiratoria delle vie aeree (vedi, ad esempio, il post del 18/10/2015). Purtroppo quasi tutti i ventilatori per anestesia non hanno (inspiegabilmente) questa possibilità, ma per fortuna possiamo farci dare la risposta da un corretto uso dei principi fondamentali della meccanica respiratoria.

Una breve premessa fisiologica. L’equazione di moto dell’apparato respiratorio ci dice che la pressione delle vie aeree è uguale alla somma della PEEP totale, della pressione elastica (Pel, prodotto di volume ed elastanza) e pressione resistiva (Pres, prodotto di flusso e resistenza) (figura 2) (vedi anche post del 24/06/2011):

equazione_di_moto

Figura 2

La PEEP totale è la pressione di fine espirazione presente nell’apparato respiratorio. Essa comprende la PEEP (la pressione positiva di fine espirazione nel ventilatore) e, quando presente, la PEEP generatasi autonomamente nell’apparato respiratorio e definita come autoPEEP. Ne deriva quindi che PEEP totale = PEEP + autoPEEP.

La pressione di picco si misura quando è stato erogato tutto il volume corrente ed è ancora presente flusso: è quindi la somma di PEEP totale, pressione resistiva e pressione elastica a fine inspirazione. La pressione di plateau, che viene rilevata quando è stato erogato il volume corrente ma il flusso è cessato, è invece la somma solamente di PEEP totale e pressione elastica a fine inspirazione.

Ora immaginiamo un paziente con autoPEEP: se  si potesse azzerare istantaneamente l’autoPEEP (tra poco vedremo come fare), la pressione di picco e la pressione di plateau si ridurrebbero della stessa entità dell’autoPEEP che abbiamo eliminato. Quindi l’entità della diminuzione delle pressioni di picco e plateau è una stima della precedente autoPEEP. Può essere facile capire questo effetto anche osservando la figura 2: se si toglie il “gradino” dell’autoPEEP, tutte le pressioni sopra l’autoPEEP (cioè pressione di picco e la pressione di plateau) si abbassano dello stesso valore del “gradino” che è stato tolto. Questo è vero ovviamente se nel frattempo restano costanti volume corrente, flusso inspiratorio, elastanza e resistenze, ovvero tutti gli altri determinanti dell’equazione di moto.

Chiaro tutto questo, il gioco è fatto. Per eliminare l’autoPEEP è sufficiente allungare il tempo espiratorio (per pochi atti respiratori) fino a vedere il flusso espiratorio che tocca la linea dello zero prima dell’inizio della inspirazione successiva. Questo in pratica può essere fatto molto semplicemente riducendo drasticamente la frequenza respiratoria e mantenendo il tempo inspiratorio costante.

Ora sappiamo tutto quel che serve per misurare la PEEP intrinseca di Ivan. Di solito con una frequenza respiratoria di 10/min si elimina l’autoPEEP di quasi tutti i pazienti, quindi vediamo nella figura 3 cosa succede al passaggio da 25/min a 10/min di frequenza respiratoria:

Figura 3

Figura 3

Nella figura si possono vedere gli atti respiratori 1-3 registrati con la frequenza respiratoria di 25/min (come in figura 2) ed i primi tre atti successivi alla riduzione della frequenza respiratoria a 10/min (dal 4 al 6). Si vede chiaramente che il passaggio a 10/min di frequenza respiratoria elimina l’autoPEEP (espirazione completa) e le pressioni di picco (PIP) e plateau (Pplat) rilevate dal ventilatore sono ridotte entrambe di 3 cmH2O. Ne consegue che l’autoPEEP era di 3 cmH2O: ecco come l’abbiamo misurata in pochi istanti senza fare alcuna occlusione. Nella figura 3 si apprezza bene anche visivamente la differenza di pressione tra un respiro senza autoPEEP (respiro 6) ed uno con autoPEEP (respiro 1). Come di norma accade, anche in questo caso sono stati sufficienti 3 respiri per stabilizzare i valori di pressione di picco e plateau dopo l’eliminazione dell’autoPEEP. Quindi la riduzione di frequenza respiratoria è sufficiente che sia mantenuta per tempi veramente brevi, di solito poco più del tempo necessario per cambiare le impostazioni e poi ripristinarle.

A questo punto possiamo tornare a 25/min di frequenza respiratoria sapendo che con 5 cmH2O di PEEP abbiamo 8 cmH2O di PEEP totale.

Il ventilatore utilizzato con Ivan richiede l’impostazione diretta del tempo inspiratorio, che quindi viene mantenuto costante (e con esso il flusso inspiratorio) durante i cambi di frequenza respiratoria. Ovviamente questo è possibile solo perchè contemporaneamente il ventilatore ha opportunamente adeguato il rapporto I:E. Nei ventilatori che ci fanno impostare il rapporto I:E, si deve regolare anche quest’ultimo per mantenere costante il tempo inspiratorio quando si modifica la frequenza respiratoria. Vediamo ora il caso di un paziente ricoverato in Terapia Intensiva proprio con un ventilatore che di default tiene costante il rapporto I:E.

Figura 4

Figura 4

Anche questo paziente presenta un evidente segno di autoPEEP, cioè il flusso espiratorio troncato dall’inizio dell’inspirazione successiva (traccia verde). Utilizzando un ventilatore da Terapia Intensiva, non abbiamo difficoltà a misurare la PEEP totale con la manovra di occlusione delle vie aeree a fine espirazione, come vediamo nella figura 5.

Figura 5

Figura 5

Il valore di PEEP misurato durante l’occlusione (9 cmH2O, nel riquadro rosso) misura la PEEP totale, mentre la PEEP impostata è 5 cmH2O, come evidenziato nel pannello grigio. Ne consegue che la PEEP intrinseca è 4 cmH2O. Verifichiamo se funziona il metodo descritto sopra confrontandolo con la tradizionale misurazione della PEEP intrinseca.

Riduciamo la frequenza respiratoria a 10/min ed portiamo il rapporto I:E da 1:1.4 a 1:5 (se fai due conti vedrai che il tempo inspiratorio resta di 1 secondo. Se hai dei dubbi, ne possiamo discutere nei commenti). E modifichiamo la durata della pausa dal 8% al 3% del ciclo respiratorio (per avere una pausa simile, anche in questo caso possiamo discutere i dubbi nei commenti). E’ un po’ più cervellotico, vero? Questo è il motivo per cui preferisco l’impostazione diretta del tempo inspiratorio…però ce la si può fare. Vediamo il risultato di questa nuova impostazione nella figura 6:

Figura 6

Figura 6

Il flusso espiratorio si azzera a fine espirazione ed abbiamo quindi eliminato l’autoPEEP. Vediamo che la pressione di plateau si riduce effettivamente di 4 cmH2O (da 25 a 21 cmH2O), cioè della stessa entità dell’autoPEEP che abbiamo misurato in precedenza. La stessa cosa però non accade alla pressione di picco, che diminuisce solamente di 1 cmH2O. Perchè?

Se guardiamo bene, si è modificata la rampa, cioè la pendenza con cui cresce il flusso inspiratorio (accade nei ventilatori che la impostano come percentuale, bisognerebbe opportunamente modificare anche questo parametro, una ulteriore complicazione…) e questo ha inevitabilmente modificato il flusso inspiratorio costante nonostante il mantenimento dello stesso tempo inspiratorio. Poco male, però. Questa imprecisione ci consente di verificare che la variazione di pressione di plateau rimane una stima affidabile dell’autoPEEP anche quando si modifica il flusso inspiratorio. L’unica attenzione da prestare è che la durata della pausa di fine inspirazione rimanga sostanzialmente costante.

Tutto ciò che abbiamo visto fino ad ora, oltre a fornire un metodo alternativo semplice per la misurazione dell’autoPEEP (che in qualche caso potrebbe anche essere addirittura preferibile a quello tradizionale), penso sia stato anche un utile ripasso dell’equazione di moto, un fondamento ineludibile per la comprensione della ventilazione meccanica.

Riassumiamo i principali concetti visti oggi:

  • la riduzione della frequenza respiratoria consente (solitamente) l’eliminazione quasi immediata dell’autoPEEP (spesso entro 2-3 atti respiratori);
  • quando si elimina l’autoPEEP riducendo la frequenza respiratoria, l’entità della riduzione della pressione di picco è uguale all’autoPEEP precedentemente presente se è rimasto inalterato il flusso inpiratorio (cioè se non si è modificata la durata in secondi del tempo inspiratorio, della pausa e della rampa);
  • la riduzione della pressione di plateau (quella ottenuta con una breve pausa inspiratoria) associata all’eliminazione della PEEP intrinseca è pari alla PEEP intrinseca precedentemente presente anche se si modifica il flusso inspiratorio (cioè la durata in secondi di tempo inspiratorio e rampa); è però raccomandabile che la durata della pausa (in secondi) rimanga grossolanamente costante.

Come sempre, un sorriso a tutti gli amici di ventilab. E, se non ci sentiamo prima, BUON NATALE!

Rapporto PaO2/FIO2: mito o realtà?

$
0
0

Il rapporto PaO2/FIO2 è normalmente utilizzato per definire la gravità di una malattia del parenchima polmonare, che come sappiamo genera ipossiemia. Nel caso della ARDS il rapporto PaO2/FIO2 è l’unica variabile che ne classifica la gravità. Il rapporto PaO2/FIO2 è indica la gravità della disfunzione respiratoria anche nel SOFA (Sequential Organ Failure Assessment), lo score di gravità delle disfunzioni d’organo più diffuso ed ora utilizzato anche per fare la diagnosi di sepsi. Nella pratica clinica il PaO2/FIO2 viene normalmente utilizzato per confrontare PaO2 ottenute con FIO2 differenti e per valutare l’evoluzione di una malattia polmonare o la sua risposta al trattamento.

L’uso del PaO2/FIO2 nella valutazione della gravità delle malattie polmonari si basa sul pressupposto che esso si modifichi al variare dello shunt, cioè della perfusione di aree polmonari non ventilate: nelle zone con addensamenti polmonari (quindi con ventilazione assente o molto ridotta), il sangue nei capillari polmonari continua a fluire senza però ossigenarsi, si crea shunt e la sua entità è stimata con la riduzione del PaO2/FIO2. Da notare che non vi sono basi fisiopatologiche nè dati clinici che supportino questo impiego del PaO2/FIO2. Vediamo ora alcuni casi che ci possono far riflettere.

Osserviamo l’evoluzione radiologica di una malattia parenchimale polmonare:

Figura 1

La radiografia A è quella basale, nella radiografia B, eseguita alcuni giorni dopo, si notano infiltrati parenchimali bilaterali. Il rapporto PaO2/FIO2 si riduce drasticamente dalla condizione A alla B. Tutto in linea con l’atteso.

Guardiamo ora 2 radiografie di un paziente ricoverato nella nostra Terapia Intensiva, eseguite a 48 ore di distanza l’una dall’altra:

Figura 2

Come ci aspettiamo sia la variazione del PaO2/FIO2?

Quando il paziente ha fatto la radiografia A della figura 2, era intubato ed aveva 73 mmHg di PaO2 con FIO2 1, quindi un rapporto PaO2/FIO2 di 73 mmHg. Quando è stata eseguita la radiografia B, la PaO2 era 68 mmHg con respirazione spontanea in ambiente (FIO2 0.21), quindi un rapporto PaO2/FIO2 di 324 mmHg. (vedi nota alla fine del post)

Come possiamo spiegare tutto questo? Nella condizione della figura 2A, il paziente aveva appena avuto una embolia polmonare. L’embolia polmonare è una malattia che colpisce esclusivamente il versante circolatorio dei polmoni, lasciando intatti gli spazi aerei del parenchima polmonare: in altre parole, il polmone è sano, solo la sua circolazione è alterata. Questo è talmente vero che un’improvvisa ipossiemia grave con normali reperti polmonari ci può far venire il sospetto proprio di un embolismo polmonare. Ma perchè l’embolia polmonare dà ipossiemia se il parenchima polmonare è sano? Nelle aree interessate dell’evento embolico si riduce la perfusione (per effetto dell’ostruzione determinata dall’embolo) mantenedosi una ventilazione normale (parenchima sano). Quindi il rapporto ventilazione/perfusione aumenta, condizione che dovrebbe determinare un aumento dell’ossigenazione secondo la fisiologia classica (area rossa nella figura 3).

Figura 3

L’ipossiemia infatti non si genera nelle aree ostruite dall’embolo, ma nelle restanti parti del polmone (figura 4). In queste infatti viene dirottato quasi tutto il sangue che il ventricolo destro riesce a pompare, generando un aumento della perfusione a parità di ventilazione, che non è modificata dall’embolismo. Quindi il rapporto ventilazione/perfusione si riduce, condizione che genera ipossiemia (area azzurra nella figura 3). Questa è una delle cause (anche se non l’unica) dell’ipossiemia nell’embolia polmonare.

Figura 4

In questo caso il rapporto PaO2/FIO2 si riduce nonostante il polmone sia sano… dimostrando di non essere una dimensione appropriata per descrivere la gravità una malattia del parenchima polmonare.

L’esempio dell’embolia polmonare ci fa capire quanto sia importante l’aspetto “perfusione” nella genesi dell’ipossiema (e quindi della riduzione del rapporto PaO2/FIO2). Siamo spesso portati a pensare all’ipossiemia come conseguenza delle sole alterazioni della “ventilazione”, dimenticando che il rapporto ventilazione/perfusione ha un numeratore ed un denominatore e che entrambi contribuiscono allo stesso modo alle variazioni del PaO2/FIO2. Questo è particolarmente vero in presenza di piccole zone di shunt, presenti nei pazienti in ventilazione meccanica anche con polmoni sani. Proviamo a pensare, ad esempio, a cosa potrebbe succedere durante una condizione di alta portata cardiaca: potrebbe esserci una riduzione del PaO2/FIO2 per effetto della riduzione del rapporto ventilazione/perfusione. In questa condizione l’applicazione di una PEEP potrebbe migliorare il PaO2/FIO2 sia aumentando il numeratore del rapporto ventilazione/perfusione (per “ventilazione” dobbiamo intendere infatti il volume delle aree ventilate, vedi il post del 21/10/2012), sia riducendo il denominatore, cioè la portata cardiaca.

Vediamo ora cosa succede al PaO2/FIO2 quando ci aspettiamo che resti costante, cioè quando il rapporto ventilazione/perfusione è costante. Immaginiamo quindi un soggetto con uno shunt del 20%. Questo significa che c’è una riduzione del rapporto ventilazione/perfusione che corrisponde al passaggio del 20% della portata cardiaca in zone del polmone non ventilate. Immaginiamo di ventilare questo soggetto con FIO2 0.5. Cosa accade al PaO2/FIO2 quando si modifica la differenza tra il contenuto di O2 nel sangue arterioso ed il contenuto di O2 nel sangue venoso misto (AVDO2)? Ricordiamo che la AVDO2 aumenta quando si riduce la portata cardiaca o l’emoglobina (cioè il trasporto di ossigeno) oppure aumenta il consumo di ossigeno; la AVDO2 invece si riduce nelle situazioni opposte. Uno studio recentissimo (1) ci mostra che in questo ipotetico soggetto, il PaO2/FIO2 è tutt’altro che costante, variando tra circa 140 e 400 mmHg al variare della AVDO2 tra 1.5 e 6 ml O2/dL (figura 5, frecce tratteggiate):

Figura 5

Da notare che nell’embolia polmonare dell’esempio precedente, si riduce la portata cardiaca ed aumenta quindi la AVDO2: questo è un altro fattore extrapolmonare che contribuisce quindi all’ipossiemia ed alla riduzione del PaO2/FIO2.

Nella figura 5 vediamo anche un’altra importante caratteristica del PaO2/FIO2: a parità di tutti gli altri fattori (inclusa la AVDO2), varia al variare della FIO2. Seguiamo, ad esempio, la linea verde, che corrisponde alla variazione del PaO2/FIO2 al variare della FIO2 quando AVDO2 è costante a 3.5 mL O2/dL. Il PaO2/FIO2 ha un minimo di circa 210 mmHg a FIO2 0.5 ed un massimo a circa 390 mmHg a FIO2 1.

Possiamo facilmente riassumere tutto quello che abbiamo finora detto in pochi punti:

  1. non esistono un razionale fisiologico dati sperimentali per utilizzare il PaO2/FIO2 come misura di malattia o disfunzione polmonare;
  2. il PaO2/FIO2 è modificato da molti fattori extrapolmonari (cioè non inerenti al parenchima polmonare):
    1. dalle alterazioni della quantità e della distribuzione della perfusione polmonare;
    2. dalle variazioni di trasporto e consumo di ossigeno (cioè della AVDO2);
    3. dalle variazioni di FIO2.

In altre parole, il PaO2/FIO2 si può modificare sia quando il polmone è ammalato sia quando è sano. Perchè allora si usa il PaO2/FIO2 nella pratica clinica per valutare la gravità di malattia e disfunzione polmonare? La spiegazione è una sola: perchè è facile da calcolare, dimenticandone però tutti i limiti. Ormai, purtroppo, la medicina si sta riducendo sempre di più alla semplificazione ed alla banalizzazione, facendo perdere di vista ai medici la complessità che caratterizza la fisiologia e la malattia. Questa è la strada che molti ci vogliono far percorrere, ma se vogliamo possiamo continuare a cercare di capire ed approfondire piuttosto che rassegnarci alla superficialità degli slogan (magari presentati sotto forma di linee guida).

Dobbiamo smettere di usare il PaO2/FIO2 nella nostra pratica clinica? Penso proprio di no, io lo utilizzo quotidianamente. Dobbiamo solo conoscerlo bene, per sapere quando credergli e quando invece non farci ingannare.

Un sorriso a tutti gli amici di ventilab.

Bibliografia.

  1. Feiner JR et al. Evaluating pulmonary function: an assessment of PaO2/FIO2. Crit Care Med 2017; 45:e40-e48

Nota: La FIO2 non si esprime in percentuale, è infatti la concentrazione frazionale, come indica proprio la lettera “F” di FIO2. FIO2 significa quindi: “frazione inspiratoria di ossigeno” ed è un numero che può teoricamente variare da 0 a 1. FIO2 0.21 è quella dell’aria atmosferica, 1 della respirazione con ossigeno puro. Non ha importanza se su alcuni ventilatori meccanici ed alcune cartelle cliniche elettroniche la FIO2 ha come unità di misura il %: sono sbagliati! Così come la lettera “I” dovrebbe essere maiuscola (ancor meglio se di dimensione ridotta, perchè simbolo qualificante), come la convenzione vuole per indicare la fase inspiratoria. E’ un po’ pedestre leggere “FiO2 40%”, due errori in poche lettere… .

Espansione volemica e pulse pressure variation.

$
0
0

Spesso chi gestisce un paziente critico si pone la domanda se il paziente sia “pieno” o vuoto” per decidere se somministrare un carico di fluidi.

Oggi ragioniamo sull’indicazione all’espansione volemica in due pazienti, Mario e Pippo. Chi segue ventilab sa che che ogni tanto scomodiamo questi due personaggi per confrontare ipotetiche condizioni cliniche.  In questo caso le caratteristiche di Mario e Pippo non sono inventate, verso la fine del post scopriremo chi sono realmente.

Sia Mario che Pippo hanno una cinquantina di anni e sono ricoverati in Terapia Intensiva con uno shock settico. La fase di rianimazione iniziale è stata completata, ed ora entrambi sono in ritmo sinusale, hanno una pressione arteriosa stabile con norepinefrina, la cui velocità di infusione da alcune ore non necessita di esssere modificata. I due pazienti sono intubati, sedati, completamente passivi alla ventilazione controllata. Le loro principali variabili cardiorespiratorie sono presentate nella tabella 1.

Tabella 1
 MarioPippo
Volume corrente (ml/kg peso ideale)66
Pressione di plateau (cmH2O)2022
PEEP totale (cmH2O)89
PaO2/FIO2 (mmHg)231224
Pressione arteriosa sistolica/diastolica (media) (mmHg)
113/54 (73)115/55 (76)
Frequenza cardiaca (1/min)131115
Norepinefrina (mcg/kg/min)0.90.5
Pressione venosa centrale (mmHg)89
ScvO2 (%)7775
Lattati (mmol/l)3.42.9

Guardando questi dati, riteniamo sia opportuna un’ulteriore espansione volemica per Mario e/o Pippo?

In entrambi i pazienti la pressione arteriosa tutto sommato può essere considerata ragionevole, pressione venosa centrale e saturazione venosa centrale (ScvO2) hanno valori sostanzialmente normali (e quindi sono di scarsa utilità nella decisione). Sia Mario che Pippo sono tachicardici, come molti pazienti con shock settico, tuttavia la frequenza cardiaca di Mario è molto alta e probabilmente meritevole di un intervento: ma quale? Espansione volemica o rallentamento farmacologico? I lattati sono ancora elevati, ma (essendo l’unico valore a disposizione) non sappiamo se siano in riduzione, stabili o in aumento.

Per quanto sappiamo fino ad ora, il dubbio se somministrare un carico di fluidi rimane. Nei casi come quelli di Mario (soprattutto) e Pippo ritengo che conoscere la portata cardiaca possa aiutare a prendere una decisione ragionata.

Dovremme avere chiaro che la somministrazione di fluidi è un mezzo e non un fine. Il fine è infatti aumentare la portata cardiaca, l’espansione volemica è solo uno dei mezzi a nostra disposizione per raggiungere questo fine. La frequente domanda se il paziente sia “vuoto” o “pieno” (assolutamente proibita nella Terapia Intensiva in cui lavoro) è la domanda sbagliata, perchè ciò che conta non è il volume (a cui spesso ci riferiamo con termini vaghi ed immisurabili come “volemia” o “precarico”) ma il flusso del sangue, cioè la misurabilissima portata cardiaca, che determina il trasporto di ossigeno ai tessuti (assieme alla concentrazione di emoglobina ed alla saturazione del sangue arterioso).

La domanda sbagliata (quella proibita…) dovrebbe essere sostituita con altre 2 domande: 1) la portata cardiaca è sufficiente per le necessità metaboliche del paziente? 2) se la risposta alla domanda 1 è ““, abbiamo finito: non abbiamo bisogno di procedere all’espansione volemica; solo se la risposta alla domanda 1 è “no“, dobbiamo farci la seconda domanda: un carico di fluidi può essere efficace per aumentare la portata cardiaca? La risposta a queste domande presuppone necessariamente la conoscenza della portata cardiaca.

Facciomoci queste due domande con Mario e Pippo: 1) la portata cardiaca è sufficiente?

L’indice cardiaco (cioè la portata cardiaca divisa per la superficie corporea) di Mario è 3.9 l/min/m2, quello di Pippo 3.8 l/min/m2, che, data la loro corporatura, corrispondono rispettivamente ad una portata cardiaca di 7.6 e 7.4 l/min. Dalla fisiologia ricordiamo che la portata cardiaca normale di un adulto a riposo è circa 5 l/min, che per la superficie corporea di Mario e Pippo corrisponde ad un indice cardiaco di circa 2.6 l/min/m2. Possiamo quindi dire che Mario e Pippo hanno una portata cardiaca di circa il 50% superiore a quella “normale”

Figura 1

Sia Mario che Pippo sono quindi in “alta portata”, ma questa è associata ad un elevata frequenza cardiaca. Ci può venire il legittimo dubbio che in realtà il cuore abbia un basso stroke volume (gittata sistolica), cioè che “pompi” poco sangue per singolo battito cardiaco, e che quindi che l’elevata portata cardiaca sia il prodotto di una eiezione sistolica ridotta per una frequenza cardiaca elevata. In questo caso la somministrazione di fluidi (e quindi l’aumento del precarico) potrebbe mantenere la portata cardiaca grazie all’aumento dello stroke volume (figura 1) e la conseguente riduzione della frequenza cardiaca.

Calcoliamo quindi lo stroke volume dividendo la portata cardiaca per la frequenza cardiaca. Lo stroke volume di Mario risulta così essere di 58 ml e quello di Pippo 65 ml, valori non molto diversi dai 70 ml di un soggetto normale. Se il cuore non è dilatato, questi corrisponderebbero a frazioni di eiezione di almeno il 50%.

Abbiamo gli elementi per rispondere alle 2 domande che abbiamo formulato: 1) nè Mario nè Pippo hanno bisogno di aumentare la portata cardiaca avendone una che è già superiore a quella normale (soprattutto considerando che sono sedati). Sappiamo infatti da almeno 20 anni che nel paziente critico l’aumento della portata cardiaca a valori sovranormali non produce alcun vantaggio clinico; 2) visto che la risposta alla prima domanda è “no“, non mi pongo la seconda domanda

Non abbiamo quindi un buon motivo per somministrare in questa fase un ulteriore carico di fluidi, che apparirebbe non solo inutile ma addirittura potenzialmente pericoloso. Sono ormai numerosi i dati che supportano la convinzione che la somministrazione generosa di fluidi ed il bilancio idrico positivo si associano ad un incremento del rischio di morte.

In questa fase ciò che mi preoccupa maggiormente è la tachicardia di Mario, ed a questo punto vorrei rivalutare l’emodinamica dopo aver rallentato la frequenza cardiaca, ad esempio con un beta-bloccante. Non è detto peraltro che la riduzione della frequenza riduca la portata cardiaca: l’incremento del tempo di diastole che ne consegue allunga il periodo di riempimento del cuore e quindi aumenta il volume di fine diastole, che in fisiologia si definisce precarico ventricolare L’incremento di precarico potrebbe tradursi in un aumento dello stroke volume: quanto raffigurato in figura 1 potrebbe verificarsi senza necessità di una espansione volemica. Tutte questo sono ovviamente mere ipotesi, assolutamente da verificare con la misurazione della portata cardiaca dopo la riduzione della frequenza.

Sei d’accordo con questo approccio? In medicina (come nella vita) raramente esiste un chiaro confine tra il giusto e lo sbagliato, ma solo cose più o meno ragionevoli, quindi più opzioni possono essere plausibili. Se hai commenti, non esitare a scriverli alla fine del post.

A questo punto sveliamo chi sono veramente Mario e Pippo. Sono i pazienti di un articolo pubblicato questo mese su Critical Care Medicine (1). Nello studio è stata valutata la variazione di portata cardiaca dopo una espansione volemica (circa 500 ml di soluzione fisiologica in 10′). Sono stati definiti “fluid-responder” i pazienti che aumentavano l’indice cardiaco di almeno il 15%, chi non raggiungeva questo risultato era “non fluid-responder”. Il nostro Mario ha riassunto i valori medi, precedenti l’espansione volemica, dei pazienti “fluid-responder“, mentre Pippo è stato descritto con i valori medi dei soggetti “non fluid-responder“. Non entriamo nel dettaglio dello studio (meriterebbe un post tutto per sè), riflettiamo solo sulle sue premesse: per quale motivo i pazienti (che sono simili a Mario e Pippo) hanno ricevuto una espansione volemica? Dai dati presentati, l’aggiunta di un carico di fluidi sembra inappropriato. Nel testo dell’articolo si afferma diplomaticamente “che sono stati arruolati pazienti in cui il medico curante aveva programmato un carico di fluidi”…

Le conclusioni dello studio sono efficacemente riassunte nel suo titolo:” The changes in pulse pressure variation or stroke volume variation after a tidal volume challenge reliably predict fluid responsiveness during low tidal volume ventilation.” Con questo bel titolo ad effetto, quello che inevitabilmente resta in mente è che la “pulse pressure variation” (vedi post del 28 maggio 2014) è utile per decidere se fare o meno espansione volemica.

Tuttavia, dopo tutto quello che abbiamo detto finora, il suo titolo avrebbe dovuto essere invece: “Attenzione! La pulse pressure variation induce a somministrare fluidi anche a chi non ne ha bisogno“. In altre parole, riuscire ad aumentare la portata cardiaca con un’espansione volemica non significa aver bisogno di farlo.  Questo la sanno benissimo anche gli autori degli studi sugli indici dinamici (di cui fanno parte pulse pressure variation e stroke volume variation), che in qualche angolo della discussione di solito non mancano di precisare che essere fluid-responder non significa aver bisogno di fluidi (per inciso, in questo articolo mi sembra si siano dimenticati di farlo…). Ma purtroppo questa fondamentale avvertenza scompare nel clamore di presunti grandi risultati, allo stesso modo in cui si perde la smentita di una notizia da prima pagina se avviene con un anonimo trafiletto nelle pagine interne…

Essere “fluid-responder” è una condizione di assoluta normalità: tutti noi siamo fisiologicamente “fluid-responder” e contemporaneamente abbiamo una normale portata cardiaca (siamo cioè nella parte ripida della relazione di Frank-Starling in figura 1). Ma non per questo pensiamo di doverci imbottire di fluidi, a meno che non ci si trovi a tavola con gli amici…

Possiamo quindi condividere che, nel paziente critico stabilizzato, l’ipotesi di somministrazione di ulteriori carichi di fluidi dovrebbe venire in mente dopo il riscontro di una bassa portata cardiaca associata a segni di ipoperfusione tissutale. Solo a questo punto ci possiamo porre il quesito se i fluidi siano una scelta efficace per aumentare la portata cardiaca, e quindi, solo a questo punto, la valutazione della pulse pressure variation potrebbe avere un senso.

Prima dei saluti, possiamo provare a tradurre clinicamente quello che abbiamo finora discusso:

  1. nella primissima fase di supporto cardiocircolatorio, reintegro volemico e vasocostrittori devono essere guidati dall’integrazione dei dati anamnestici, clinici e strumentali (anche ecografici); la somministrazione di vasocostrittori dovrebbe essere limitata al mantenimento di una sufficiente pressione arteriosa media (approssimativamente 70 mmHg, cioè circa 80-90/50-60 mmHg di pressione arteriosa);
  2. se, dopo il trattamento iniziale, permane la necessità di dosaggi medio-elevati di farmaci vasoattivi, può essere opportuno misurare la portata cardiaca, oltre a valutare i segni di ipoperfusione/ipossia tissutale (riduzione di diuresi e saturazione venosa centrale, aumento di lattati e tempo di refilling capillare,…)
    • se la portata cardiaca è normale/elevata (indice cardiaco > 3 l/min/m2, anche meno in assenza di segni di ipoperfusione  tissutale), ci si potrebbe limitare a modulare il vasocostrittore (ad esempio la noradrenalina) con l’obiettivo di mantenere una sufficiente pressione arteriosa (vedi punto 1); in questa fase l’espansione volemica di norma è inappropriata ed inopportuna, a meno che non vi sia uno stroke volume ridotto associato ad una frequenza cardiaca molto alta (ad esempio > 120/min);
    • se la portata cardiaca è ridotta, la misurazione degli indici dinamici (pulse pressure variation, passive leg raising, ecc….) può aiutare a decidere se procedere all’espansione volemica o all’utilizzo di inotropi, senza dimenticare ovviamente la valutazione clinica degli edemi, la variazione del peso corporeo e la rilevazione degli indici statici (PVC e/o pressione di occlusione dell’arteria polmonare, vedi post del 3 maggio 2015).

Un post non può certo esaurire un argomento così complesso, spero comunque di aver dato qualche utile spunto di riflessione.

Un sorriso 🙂 a tutti gli amici di ventilab.

Bibliografia.

1) Myatra SN et al. The changes in pulse pressure variation or stroke volume variation after a tidal volume challenge reliably predict fluid responsiveness during low tidal volume ventilation. Crit Care Med 2017; 45;415-21

PS: per un piccolo ringraziamento a Mario e Pippo, clicca qui.

Ventilazione non-invasiva: come impostare il supporto inspiratorio.

$
0
0

Il successo della ventilazione meccanica dipende in maniera decisiva anche dall’appropriatezza della sua impostazione. Se in un paziente con ARDS sbagliamo la scelta di volume corrente e PEEP, possiamo trasformare una tecnica molto efficace in un problema senza soluzione; se durante la ventilazione assistita utilizziamo costantemente un supporto inspiratorio eccessivo o insufficiente, possiamo perpetuare la dipendenza dalla ventilazione meccanica invece che avviarci verso lo svezzamento.

A volte ho la sensazione che ci si dimentichi questo concetto fondamentale quando si parla di ventilazione non-invasiva: si passa il tempo a discutere se sia efficace o meno, senza specificare i criteri di impostazione. E’ un approccio profondamente sbagliato: la ventilazione non-invasiva non è efficace perchè si applica una maschera sulla faccia, ma perchè si eroga una ventilazione meccanica

Oggi vediamo come impostare il supporto inspiratorio (cioè la pressione di supporto o la differenza IPAP-EPAP) in maniera efficace quando curiamo un paziente con insufficienza respiratoria acuta (anche in presenza di una componente cronica). Su questo argomento esistono diversi approcci ed opinioni autorevoli, quello che propongo è ciò che personalmente ritengo più logico.

Consideriamo il momento in cui si inizia la ventilazione non-invasiva. In questa fase la pressione di supporto dovrebbe essere la più elevata possibile. E’ opportuno iniziare con un basso livello di supporto inspiratorio (ad esempio 5 cmH2O) e rapidamente (in pochissimi minuti) raggiungere, per incrementi successivi, il massimo livello che il paziente tollera o ritiene confortevole e che si associa ad un livello gestibile di perdite aeree.

E’ importante raggiungere il massimo possibile perchè in questa fase la ventilazione non-invasiva viene sempre proposta a pazienti che hanno o 1) una insufficienza della pompa respiratoria o 2) un elevato lavoro dei muscoli respiratori.

Dovremmo intendere come insufficienza della pompa respiratoria quella condizione in cui si ha una acidemia (cioè un pH < 7.35) senza ipocapnia (PaCO2 > 35 mmHg) (vedi post del 29/01/2011). Rientrano in questa categoria, oltre alla classica acidosi respiratoria ipercapnica, anche quei casi di acidosi metabolica senza una ipocapnia. Durante acidosi metabolica, la normale risposta di una pompa respiratoria efficiente è qualla di iperventilare per ridurre la PaCO2 e quindi tendere alla correzione del pH. Se la pompa respiratoria è esaurita, la PaCO2 rimane attorno ai 40 mmHg senza alcun tentativo di correzione respiratoria del pH.

L’elevato lavoro dei muscoli inspiratori è una condizione di stress che può precedere la vera e propria insufficenza della pompa respiratoria, e clinicamente si manifesta con dispnea, tachipnea (aumento della frequenza respiratoria), polipnea (aumento della ventilazione/minuto), non di rado iperpnea (aumento della profondità dell’inspirazione),  e utilizzo dei muscoli accessori della respirazione (è ben esplorabile lo sternocleidomastoideo). In questa fase la PaCO2 può essere normale o ridotta ed il pH normale o alcalino. Quando i muscoli inspiratori iniziano a cedere sotto il peso di un prolungato periodo di elevato lavoro respiratorio, iniziamo a vedere il respiro rapido e superficiale ed infine il respiro paradosso (addome e torace si espandono in maniera alternata invece che sincrona durante gli atti respiratori).

In entrambe queste condizioni un obiettivo fondamentale della ventilazione non-invasiva è mettere a riposo il più possibile i muscoli inspiratori. E’ sbagliato pensare di ottenere questo obiettivo impostando una pressione di supporto sufficiente a raggiungere un volume corrente di 6-8 ml/kg (di peso ideale). Questo può essere un obiettivo necessario ma certamente non sufficiente. Infatti molti pazienti con elevato lavoro respiratorio sono già in grado di inspirare un volume corrente normale (o elevato) anche senza alcun supporto inspiratorio: sono cioè ancora in grado di combattere, seppur ad un elevato prezzo metabolico e di stress. In queste condizioni i muscoli respiratori possono utilizzare anche più del 25% dell’ossigeno consumato dall’intero l’organismo (in condizioni di normalità è circa il 1-2%), con sovraccarico della funzione cardiaca e sofferenza di altri tessuti.

Dobbiamo quindi affidarci a criteri diversi dal volume corrente. Possono aiutarci a scegliere il livello di supporto inspiratorio la valutazione della frequenza respiratoria, della dispnea, dell’utilizzo dei muscoli accessori della respirazione e, come sempre, il monitoraggio grafico della ventilazione.

Se durante ventilazione non-invasiva il volume corrente fosse compreso tra 420 e 470 ml potremmo essere soddisfatti nella maggior parte dei pazienti. Ma il monitoraggio grafico della ventilazione meccanica può fornirci informazioni decisive per una impostazione appropriata della pressione di supporto.

Nella figura 1 vediamo il flusso nelle vie aeree nello stesso paziente con 3 diversi livelli di pressione di supporto (da sinistra a destra: 5, 15 e 20 cmH2O sopra la PEEP di 5 cmH2O). Tra le 3 condizioni, il volume corrente varia effettivamente tra 420 e 470 ml.

Figura 1

Nel riquadro C abbiamo un flusso che, dopo il picco iniziale (porzione verticale viola), è (quasi) decrescente, tipico della ventilazione pressometrica passiva. Questo vuol dire che il paziente, dopo aver attivato il ventilatore, tende a mettere a riposo i muscoli inspiratori. Osserviamo la parte viola della curva di flusso nei riquadri A e B: dopo il picco iniziale, il flusso inspiratorio non decresce come nel riquadro C, segno di una persistente attività dei muscoli inspiratori, che è tanto più marcata tanto più ci si allontana dalla teorica decrescita passiva.

La figura 2 presenta le stesse curve della figura 1, con una retta che congiunge l’iniziale picco di flusso con il flusso quando inizia il ciclaggio tra inspirazione ed espirazione (istante in cui il flusso inizia a crollare verso lo zero).

Figura 2

Questa rappresentazione aiuta a capire cosa si intende per flusso decrescente e come valutare, seppur in maniera grossolana e qualitativa, quando e quanto un soggetto continua ad utilizzare i muscoli inspiratori durante il supporto inspiratorio. Nel riquadro A c’è un’area molto rilevante tra la traccia di flusso e la linea tratteggiata che dovrebbe descrivere l’ipotetico decadimento passivo del flusso; nel riquadro B c’è ancora una evidente area tra flusso e linea di decadimento passivo, però minore rispetto a quella vista in A e quindi segno di un minor contributo dei muscoli inspiratori; in C praticamente tutto il flusso è sulla liena di decadimento e ci fa pensare che resti solo eventualmente una minima attività dei muscoli inspiratori dopo il triggeraggio.

Ora possiamo capire bene perchè, quando iniziamo la ventilazione non-invasiva, dovremmo incrementare la pressione di supporto per avvicinarci il più possibile al profilo di flusso che vediamo in C. E’ importante fermarsi nell’incremento della pressione di supporto appena si nota questo pattern. Il livello di assistenza inspiratoria va rivalutato, con l’approccio appena visto, tutte le volte che si osservi un cambiamento del pattern respiratorio. Spesso vedremo che poco dopo l’inizio della ventilazione non-invasiva potremo ridurre il supporto inspiratorio mantenendo una bassa attività dei muscoli inspiratori.

Quando la condizione di insufficienza di pompa respiratoria o di elevato lavoro dei muscoli inspiratori tendono a risolversi, potremo tranquillamente abbassare il livello di pressione di supporto, senza più ricercare la passività del paziente. Viceversa, se non si dovesse arrivare a questo punto in tempi ragionevolmente brevi, dovremmo iniziare a pensare all’intubazione tracheale.

Se siamo d’accordo su quando detto finora, dobbiamo ammettere che la CPAP raramente può essere una tecnica ottimale di ventilazione non-invasiva.

Uno dei problemi a cui espone questo approccio è quello di avere qualche paziente che genera volumi correnti molto elevati, anche 10-12 ml/kg. Dobbiamo però essere lucidamente consapevoli che questo  volume corrente non è passivamente generato dal livello di supporto inspiratorio se abbiamo scelto il livello di pressione inspiratoria necessario e sufficiente a far riposare i muscoli respiratori. Infatti stiamo semplicemente aiutando il paziente a fare ciò che il suo cervello (=centri del respiro) comanda. Se dal cervello partono ordini potenzialmente dannosi (=generare un alto volume corrente), la soluzione non è mettere in difficoltà la pompa respiratoria per impedire che ciò accada. In questa situazione vale la pena valutare se il volume corrente tenderà a ridursi man mano che si metteno a riposo i muscoli respiratori. Se ciò non dovesse accadere, a noi la responsabilità di scegliere se accettare un volume corrente elevato o iniziare una ventilazione protettiva, che non potrà che essere invasiva e con sedazione/parlisi. Ma questo è un altro capitolo…

Per concludere, facciamo una breve sintesi dei punti principali:

  • all’inizio della della ventilazione non-invasiva il supporto inspiratorio dovrebbe essere regolato per rendere il più decrescente possibile il flusso inspiratorio; ne risulterà anche la riduzione della dispnea, della tachipnea e dell’utilizzo dei muscoli accessori della ventilazione;
  • dopo aver scaricato i muscoli respiratori da un eccessivo lavoro, si dovrebbe iniziare a ridurre il supporto, accettando un livello di attività respiratoria compatibile con le risorse muscolari;
  • qualora con questo approccio si ottenesse un volume corrente che si ritiene causa di possibile danno indotto dalla ventilazione, una soluzione normalmente ragionevole è passare alla ventilazione protettiva invasiva.

Un sorriso a tutti gli amici di ventilab.

 

Asincronie paziente-ventilatore e valutazione del dolore: una riflessione sulle validate scale comportamentali.

$
0
0

Viene proposto sempre più di frequente l’utilizzo di scale comportamentali per la valutazione del dolore nel paziente che non è in grado di comunicare. Le due scale più accreditate sono la Behavioral Pain Scale (BPS) (1) (figura 1) e la Critical-Care Pain Observation Tool (CPOT) (2) (figura 2), il cui uso è consigliato ormai da tutte le linee guida sulla​ gestione del dolore nel paziente critico.

Figura 1

Queste scale attribuiscono punteggi all’espressione del volto, a posizione e movimenti del corpo ed al cosiddetto “adattamento” alla ventilazione meccanica. Quest’ultimo concetto, espresso in termini più appropriati, è l’interazione paziente-ventilatore, argomento a cui anche ventilab attribuisce da sempre grande importanza. Quindi le scale comportamentali utilizzano le asincronie per la valutazione del dolore.

Figura 2

Nella BPS e nel CPOT non si pretende certo di analizzare tutta l’interazione paziente-ventilatore, ma solo di rilevare quelle grossolane asincronie che possono far suonare l’allarme del ventilatore meccanico. Queste asincronie sono quelle che aumentano la pressione nelle vie aeree oltre il limite prefissato. Vediamo un esempio nella figura 3.

Figura 3

Cerchiamo di capire perché succede. La curva gialla è la pressione delle aeree, quella verde è il flusso. Vediamo che i picchi di pressione che allarmano il ventilatore si verificano nell’ultima fase del flusso inspiratorio. Anzi, l’attivazione dell’allarme di pressione è proprio un evento che fa cessare il flusso inspiratorio ed apre l’espirazione. Se questo diventa frequente, la ventilazione meccanica può divenire anche impossibile.

Ora facciamo attenzione anche alla traccia bianca che compare insieme alla curva gialla. Quando la traccia bianca sale, il paziente inspira, quando scende invece espira. Vediamo una totale asincronia tra i periodi inspiratorio ed espiratorio del paziente (traccia bianca) e quelli del ventilatore (traccia verde). La pressione delle vie aeree (traccia gialla) si avvia verso il limite di allarme quando il paziente inizia ad espirare (la traccia bianca inizia a scendere​) mentre il ventilatore cerca di erogare​ ancora flusso inspiratorio (traccia verde al di sopra dello zero).

Questa asincronia è un ciclaggio ritardato. L’attivazione dell’allarme di pressione si può verificare in particolare durante la ventilazione a volume controllato, come nell’esempio in figura 3. Per risolvere l’asincronia e  far cessare l’attivazione dell’allarme possiamo migliorare l’impostazione della ventilazione a volume controllato oppure cambiare modalità di ventilazione. Nelle ventilazioni ciclate a flusso (pressione di supporto) se questa asincronia persiste, è perlomeno silenziosa ed un occhio poco esperto non se ne accorge.

Torniamo a BPS e CPOT. Sia nella BPS che nel CPOT si interpretano, di fatto, alcune grossolane asincronie come espressione di dolore. Ma che caspita c’entrano le asincronie con il dolore? Il paziente “contrasta” il ventilatore se questo è impostato male. Ed il problema può essere risolto adeguando l’impostazione del ventilatore. Migliorando l’impostazione del ventilatore, abbiamo forse tolto dolore ad un paziente che lo aveva? Nelle ventilazioni ciclate a flusso il paziente di fatto non può “contrastare”, mentre il quelle ciclate a tempo (in particolare il volume controllato) questo accade senza un buon setting del ventilatore. Vuol dire che in pressione di supporto si ha meno dolore che in volume controllato? Siamo evidentemente nel campo dell’assurdo. Che siano forse assurdi anche BPS e CPOT?

Qualche dubbio a me viene. Entrambe le scale del dolore nascono utilizzando variabili selezionate arbitrariamente e non per una dimostrata associazione con il dolore. Di fatto gli autori hanno semplicemente deciso dovessero essere quelle e che dovessero avere i punteggi che essi hanno ritenuto appropriati. È facile inventare score così… Ma se funzionano, visto che si sente sempre dire che sono validate, ce ne potremmo fare una ragione. Ma diamo una rapida occhiata a come BPS e CPOT sono stati validati.

Il BPS è stato “validato” confrontando il punteggio ottenuto durante stimoli ritenuti dolorosi (mobilizzazione o tracheoaspirazione) con quello rilevato durante stimoli ritenuti non dolorosi (applicazione calze compressive o medicazione del catetere venoso centrale). Lascio a ciascuno i commenti sulla scelta di questi stimoli (la tracheoaspirazione non interferisce di per sè forse con la ventilazione?). E accenno solo il fatto che è stato utilizzato un approccio statistico scorretto (i classici test parametrici su dati ordinali evidentemente non distribuiti normalmente).

Entriamo nel merito: il punteggio del BPS può variare da 3 a 12. Nello studio di “validazione” la media del BPS durante le procedure dolorose era tra 4 e 5, mentre durante le procedure non dolorose era tra 3 e 4. Quindi, in media, 1 punto di differenza tra dolore e non dolore. Quando la stessa procedura dolorosa era ripetuta nello stesso paziente, il punteggio del BPS era diverso di almeno 1 punto 14 volte su 31. Cioè la differenza di BPS tra procedure dolorose identiche nello stesso paziente era spesso simile alla differenza media tra procedure dolorose e non dolorose. La concordanza della misurazione del BPS tra diversi operatori è poi stata fatta considerando concordi le valutazioni che differivano di 1 punto… (che abbiamo visto essere la differenza media tra dolore e non dolore…).

Il punteggio di BPS in quasi tutti i pazienti dello studio di “validazione” era inferiore a 8 (gli stessi autori scrivono che per questo motivo non sono stati in grado di valutare la validità dello score sopra 8). Quindi si è inventato uno score che consente una variazione di 10 punti (da 3 a 12), ed alla fine sappiamo che funziona piuttosto male sulla prima metà della scala.
Per brevità, solo una piccola nota dello studio di validazione del CPOT: si nota nei risultati che avevano un CPOT di 2 sia pazienti che dichiaravano di avere dolore che quelli che non riferivano dolore. Penso basti questo.

Come possiamo vedere, BPS e CPOT non solo non​ hanno un razionale clinico-fisiologico e nemmeno un solido costrutto metodologico, ma sono tutt’altro che validati se andiamo a leggere la letteratura originale (ma tanto non lo fa nessuno…).

Restituiamo quindi le asincronie al complesso mondo dell’interazione paziente-ventilatore ed abituiamoci a gestire la complessità invece che impigrirci nella banalizzazione. Certamente le asincronie possono essere frequenti nei pazienti con drive e frequenza respiratoria elevati, come ad esempio quelli con dolore, con febbre, con agitazione, con elevato spazio morto, con ipossiemia, con acidosi metabolica, con iperventilazione centrale,… ma a ciascun problema diamo una soluzione appropriata.

Ancora il tempo per una domanda ed una considerazione prima di salutare.

La domanda. Abbiamo proprio bisogno di dare un numero per sapere se un paziente ha un dolore da trattare? Riteniamo che, nei soggetti incapaci di comunicare correttamente il proprio dolore, scale idiote siano migliori della capacità dell’essere umano di vedere la sofferenza sul volto e sul corpo dei propri simili? È oggettività o ubriacatura da punteggi? Per definizione non si può oggettivare il dolore altrui, siamo però capacissimi di vederlo, fa parte della nostra competenza di esseri umani. Purtroppo quando entriamo in ospedale rischiamo di sminuire quest’ultima competenza a favore di sedicenti oggettività.

La considerazione. Ormai ci si riempie la bocca di linee-guida e strumenti validati. Si crede ad una medicina che produce certezze. Purtroppo (e per fortuna) non è così. L’accettazione acritica di linee-guida, quasi regolarmente prive di raccomandazioni 1A (questo dovrebbe far riflettere…), e di strumenti validati (spesso allo stesso livello di BPS e CPOT) rischia di privare il medico dell’abitudine elementare al ragionamento clinico, della capacità di approfondimento e dell’entusiasmo nel proprio lavoro. Sfruttiamo il prezioso lavoro che per tutti compiono coloro che fanno le linee-guida, ma ad esse cerchiamo sempre di affiancare la nostra capacità critica, evitiamo un atteggiamento di religioso rispetto che deve eventualmente essere riservato a misteri ben più profondi. Cerchiamo sempre di capire e di conoscere in prima persona tutto quello che possiamo.

Un sorriso a tutti gli amici di ventilab, come sempre.

1) Payen JF et al. Assessing pain in critically ill sedated patients by using a behavioral pain scale. Crit Care Med 2001; 29:2258-63
2) Gélinas C et al. Validation of the Critical-Care Pain Observation Tool in adult patients. Am J Crit Care 2006; 15:420–427


Compliance: la relazione pressione-volume nella pratica

$
0
0

La relazione pressione-volume statica dell’apparato respiratorio (detta anche più familiarmente “curva di compliance“) è un fondamento indispensabile per la comprensione della ventilazione meccanica e della interazione paziente-ventilatore.

Costruire la curva di compliance nella realtà e ragionare su di essa è un ottimo modo per raggiungere la conoscenza pratica, cioè un vero e persistente arricchimento culturale e professionale. Vediamo quindi insieme come farlo al letto del paziente, con qualsiasi ventilatore meccanico.

Partiamo dando un significato alle parole: relazione pressione-volume statica dell’apparato respiratorio. “Relazione pressione-volume” significa semplicemente misurare di quanto aumenta il volume al variare della pressione: quando applico 1 cmH2O di pressione, di quanto aumenta il volume? Questa è la compliance. Ad esempio avere 50 ml/cmH2O di compliance significa che ad ogni cmH2O di aumento di pressione corrisponde un aumento di 50 ml di volume. Nella pratica otterremo questa informazione in maniera più semplice misurando quanto aumenta la pressione dopo l’erogazione di un volume noto.

Il termine “statica” definisce che la variazione di pressione è rilevata in assenza di flusso: cioè misuriamo la pressione nell’apparato respiratorio dopo un periodo di pausa che segue l’erogazione del volume. La durata della pausa deve essere sufficiente ad ottenere una pressione stabile (un plateau). In questo modo eliminiamo l’effetto delle resistenze e studiamo solo le pressioni che si sviluppano all’interno dell’apparato respiratorio.

La specifica “dell’apparato respiratorio” ci fa intendere che riferiamo le nostre misurazioni a polmoni e gabbia toracica considerati globalmente. Per la meccanica respiratoria, l’apparato respiratorio è usualmente semplificato in un modello costituito da due elementi: i polmoni inseriti nella gabbia toracica. La sola misurazione della pressione delle vie aeree consente di studiare l’apparato respiratorio nel suo complesso, senza poter identificare le singole caratteristiche di polmoni e gabbia toracica.

Dopo questa breve premessa, iniziamo a costruire concretamente la curva di compliance.

Iniziamo con un grafico vuoto che ci aiuta a capire meglio di cosa stiamo parlando.

Figura 1

Dovremo riempire il grafico con diversi volumi (asse verticale) misurando la corrispondente pressione statica (asse orizzontale). Importante capire cosa rappresentano il punto 0 di pressione e volume (sono entrambi zeri relativi): lo zero di pressione è relativo alla pressione atmosferica, lo zero di volume identifica il volume di rilasciamento (o equilibrio elastico) dell’apparato respiratorio, cioè il volume che l’apparato respiratorio raggiunge al termine di un’espirazione passiva completa che equilibra la pressione intrapolmonare con quella atmosferica. In assenza di iperinflazione dinamica, corrisponde alla capacità funzionale residua.

Ora immaginiamo di ventilare un paziente passivo alla ventilazione meccanica (nessun segno di attività dei muscoli respiratori al monitoraggio grafico ed alla valutazione clinica). Modifichiamo temporaneamente l’impostazione del ventilatore meccanica: azzeriamo la PEEP e riduciamo la frequenza respiratoria (mantenendo un tempo inspiratorio di circa 1 secondo) fino ad ottenere un tempo espiratorio sufficiente ad evitare l’autoPEEP (il flusso espiratorio cioè diventa zero prima dell’inizio dell’inspirazione successiva). Quest’ultima condizione può essere facilmente raggiunta in quasi tutti i pazienti con una frequenza respiratoria di 10-15/minuto. Eseguiamo un’occlusione delle vie aeree a fine inspirazione e manteniamola 3″, tempo solitamente sufficiente ad ottenere la stabilizzazione della pressione delle vie aeree su un plateau. La pressione rilevata durante il plateau, alla fine dei 3″ di occlusione, è la pressione di plateau. Nota pratica: tutte le occlusioni devono avere la medesima durata per garantire che le diverse pressioni di plateau siano rilevate a parità di condizioni.

Procediamo ora con un esempio pratico, analizzando la costruzione della curva di compliance in un paziente con ARDS grave.

Figura 2

Nella figura 2 possiamo visualizzare tutti gli elementi descritti quando il paziente che riceve 500 ml di volume corrente e sviluppa 15 cmH2O di pressione di plateau. Possiamo riportare il risultato sul grafico pressione-volume dell’apparato respiratorio.

Figura 3

Figura 4

Per costruire una relazione pressione-volume è necessaria una serie di punti. Più punti ci sono, più si aumenta la precisione della relazione. Dobbiamo quindi somministrare in rapida successione diversi volumi correnti (possiamo tenere ciascuno solo un minuto) ed eseguire per ogni volume corrente la manovra di occlusione decritta sopra. E’ opportuno che il volume più piccolo porti ad ottenere non più di 2 cmH2O di pressione di plateau e che il più alto abbia superato la soglia di sovradistensione (almeno 2-3 volumi correnti con stress index superiore a 1) o raggiunga una pressione di plateau di 40 cmH2O. Per avere una accettabile relazione pressione-volume di solito sono sufficienti 12-15 diversi volumi correnti, che si ottengono con una differenza di 50-100 ml tra l’uno dall’altro. E’ infine utile alternare volumi alti e volumi bassi per evitare significativi periodi di ipoventilazione durante l’applicazione dei volumi correnti più bassi. Qui a fianco possiamo vedere la sequenza delle occlusioni nel nostro paziente con ARDS: il maggior volume corrente utilizzato (700 ml) è chiaramente associato a segni di sovradistensione (già presenti anche a volumi inferiori). Esso è seguito dal volume corrente minimo, sufficiente ad ottenere non più di 2 cmH2O di pressione di plateau. Da questo punto iniziamo una alternanza di volumi correnti alti e bassi che progressivamente calano di 50 ml dal massimo o aumentano 50 ml dal minimo. Come possiamo vedere la pressione di plateau (Pplat) è semplicemente letta sul diplay del ventilatore in tempo reale durante l’occlusione. Abbiamo applicato 13 diversi volumi correnti, che significano realisticamente (con un po’ di esperienza) una ventina di minuti complessivi di lavoro.

Figura 5

Ora dobbiamo costruire il grafico. Potremmo anche utilizzare carta (un foglio a quadretti o, meglio, di carta millimetrata) e penna  come si faceva in tempi eroici. Ma oggi è molto meglio aprire un foglio elettronico e inserire i risultati su due colonne: nella prima la pressione di plateau, nella seconda il corrispondente volume corrente, come mostrato in figura 5.

Il passaggio finale è la creazione del grafico sul foglio elettronico: finalmente vedremo il risultato del nostro lavoro e trarremo alcune conclusioni che ci potranno aiutare nelle scelte di ventilazione meccanica.

Ecco la relazione pressione-volume statica dell’apparato respiratorio del paziente che stiamo vedendo come esempio:

Figura 6

Osserviamo che gli aumenti di pressione-volume fino a 18 cmH2O-600 ml possono essere ben raggruppati lungo una linea retta (linea tratteggiata grigia in figura 7). Questa linea però non includerebbe i punti oltre i 18 cmH2O-600 ml, che si troverebbero più in basso. Questi punti sono meglio rappresentati da una linea meno pendente (linea tratteggiata rossa in figura 7).

Figura 7

La pendenza di ciascuna delle due rette è una compliance, infatti esprime la variazione in ml per cmH2O: bassa pendenza = bassa compliance, alta pendenza = alta compliance. La linea grigia è una compliance di 31 ml/cmH2O, cioè il rapporto tra la variazione di volume di 500 ml (da 100 a 600 ml) e la variazione di pressione di 16 cmH2O (da 2 a 18 cmH2O). La linea rossa identifica una compliance di 14 ml/cmH2O.

Figura 8

Volendo essere pignoli, dopo aver visto nella figura 6 che 18 cmH2O-600 ml sono il “punto di rottura” della linea, possiamo riscrivere nel foglio elettronico i dati come vediamo in figura 8. Creiamo due colonne di volume, una con i dati sulla prima linea di pendenza ed una con i dati sulla seconda linea di pendenza. Il valore 18 cmH2O-600 ml compare in entrambe le colonne perchè appartiene ad entrambe.

Se creaimo ora il grafico (figura 9), avremo una serie di punti per la prima (in grigio) ed una per la seconda pendenza (in rosso). E potremo chiedere al foglio elettronico di disegnare la retta della pendenza di ciascuna delle due serie, di mostrare l’equazione di questa retta (che è la relazione pressione-volume) ed il coefficiente di determinazione (R2). Vediamo e commentiamo il risultato, rendendolo semplice e comprensibile per tutti.

Figura 9

Le rette che ha disegnato il folgio elettronico sono molto simili a quelle che abbiamo disegnato ad occhio nella figura 7 (quindi noi ed il computer siamo d’accordo!). Vicino ad esse c’è una equazione, che ci deve lasciare tranquilli: il coefficiente della x (nel riquadro blu) è la compliance calcolata sulla retta (praticamente identica a quella che ci siamo calcolati in precedenza, anche questa una conferma dei risultati). Il valore di R2 ci informa di quanto la variazione di volume possa essere spiegata dalla variazione di pressione, in parole povere quanto sia buona la correlazione tra pressione e volume. Un R2 maggiore di 0.9 è un’ottimo risultato perchè significa che la relazione pressione-volume è accurata e non ci stiamo inventando relazioni che non esistono: nel nostro caso abbiamo un’ottima correlazione per entrambe le rette (anche se quella rossa è fatta solo con 3 punti…). Con questo approccio più “matematico” non abbiamo aggiunto nulla di nuovo, ma ci sentiamo tranquilli che le nostre valutazioni occhiometriche non erano forzate. In questo grafico vediamo che l’incrocio tra le due rette, che viene normalmente definito punto di flesso superiore, si verifica ad un livello di pressione leggermente inferiore a 18 cmH2O (linea verticale blu tratteggiata in figura 9).

Ed ora cosa ce ne facciamo di tutto il nostro lavoro? In questo paziente con ARDS è assente il punto di flesso inferiore, manca cioè alle pressioni più basse una linea con compliance inferiore alla massima pendenza. Nei pazienti con punto di flesso inferiore (ci capiterà prossimamente di vederne qualcuno), la PEEP dovrebbe essere leggermente superiore (un paio di cmH2O) alla pressione a cui lo osserviamo. Al contrario, i pazienti senza punto di flesso inferiore (come il nostro) si giovano di bassa PEEP, che potremmo quindi decidere di mettere a 5 cmH2O (meglio se la rivalutiamo con un trial di PEEP per scegliere quella associata alla minor driving pressure, vedi post del 28/2/2015 e del 18/10/2015). Sappiamo inoltre che dovremmo evitare pressioni di plateau superiori a 17 cmH2O (un valore decisamente minore dei 30 cmH2O raccomandati dalle linee guida…). La variazione di pressione da 5 (PEEP) a 17 cmH2O (massima pressione di plateau tollerata) è di 12 cmH2O. Con una complinace di 31 ml/cmH2O, questo corrisponde ad una variazione tidal di volume di circa 370 ml. Questa potrebbe essere un’impostazione razionale del ventilatore meccanico, ricordando che i 5 cmH2O sono sempre di PEEP totale. Quando aumentiamo la frequenza respiratoria dopo la costruzione della curva di compliance, probabilmente genereremo autoPEEP: dovremo quindi riaggiustare la PEEP e misurare la PEEP totale con l’occlusione a fine espirazione per portarla ai 5 cmH2O che ci siamo posti come obiettivo.

La logica di questo approccio è stata utilizzata in alcuni trial clinici (1-3) che, complessivamente, hanno portato a risultati migliori rispetto alla sola riduzione del volume corrente  (4) (l’unica differenza riguarda la scelta della PEEP nei pazienti senza punto di flesso inferiore).

L’applicazione della PEEP può modificare la curva di compliance e rendere più complesso il ragionamento. Ma su questo avremo modo di confrontarci prossimamente, per oggi penso basti così.

Vorrei concludere invitando tutti a ricavare la curva di compliance sui propri pazienti e ricavarne informazioni clinche utili per la ventilazione. Le prime volte certamente non si raggiungerà la perfezione, ma dopo poche esperienze alcuni concetti fondamentali si chiariranno e si scolpiranno nella propria conoscenza e capacità clinica. Un consiglio: alle prime esperienze, evitare pazienti con ipossiemia molto grave: se non si è rapidi e coordinati nella procedura (cosa che si acquisisce con la pratica), le fasi a basso volume corrente senza PEEP potrebbero non essere semplicissime. Presto valuteremo anche approcci più veloci per costruire la curva di compliace, ma vale la pena affrontarli dopo aver digerito questo approccio classico.

Come sempre, un sorriso a tutti gli amici di ventilab.

 

Bibliografia
1) Amato MB et al. Effect of a protective-ventilation strategy on mortality in the Acute Respiratory Distress Syndrome. N Engl J Med 1998; 338:347-54
2) Ranieri VM et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 1999; 282:54-61
3) Villar J at al. A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: A randomized, controlled trial. Crit Care Med 2006; 34:1311-8
4) ARDS Network. Ventilation with lower tidal volumes as compared with traditional for acute lung injury and the acute respiratory distress sindrome. N Engl J Med 2000, 342:1301-8

Monitoraggio grafico della ventilazione meccanica: un approccio sistematico per l’interpretazione.

$
0
0

Quando si prova ad interpretare le curve di pressione e flusso delle vie aeree, spesso vedo commettere un errore fondamentale: voler dare subito la diagnosi, cioè trovare la risposta giusta a colpo d’occhio, arrivandoci e non dopo una analisi ragionata. Si prova ad indovinare piuttosto che a ragionare. Certo, le asincronie più clamorose si vedono al volo, ma, se si vuole diventare davvero bravi, il metodo di gran lunga migliore è quello di applicare un approccio sistematico di lettura e giungere alle conclusioni solo al termine dell’analisi, dopo aver capito esattamente ogni singola dinamica. Un possibile approccio sistematico alla interpretazione delle tracce di pressione e flusso delle vie aeree (ABC-DEF) è stato proposto già 7 anni fa nei post del 13/08/2010, del 20/08/2010 e del 29/08/2010. Nonostante il vecchio ABC-DEF di ventilab sia semplice e sempre valido, oggi vorrei proporre un metodo completamente nuovo, fondato sulla comprensione profonda dell’interazione paziente-ventilatore. Il metodo prevede 7 fasi e lo chiameremo RESPIRE, dall’iniziale di ciascuna fase.

Oggi vedremo in sintesi il metodo RESPIRE nella sua applicazione pratica valida per tutte le ventilazioni pressometriche, cioè tutte le modalità di ventilazione meccanica ad eccezione di volume controllato, NAVA e PAV. Durante il corso “Le modalità di Ventilazione Meccanica” avremo certamente modo di dettagliare meglio il razionale del RESPIRE ed estenderne l’applicazione a tutte le modalità di ventilazione meccanica.

Applichiamo il RESPIRE ad una paziente (con peso corporeo ideale di 52 kg) ventilata con pressione di supporto 8 cmH2O e PEEP 5 cmH2O. Nella figura 1 è riprodotta la schermata completa dello schermo del ventilatore meccanico.

Figura 1

Guardando i numeri, notiamo che la frequenza respiratoria è inferiore a 30/min, il volume corrente è 8 ml/kg, il rapporto frequenza respiratoria/volume corrente è 68. Non male. Vediamo ora cosa ci aggiunge il monitoraggio ventilatorio.

Il RESPIRE può essere applicato al letto del paziente congelando/salvando lo schermo del monitor ed utilizzando i cursori che i ventilatori meccanici offrono per l’analisi delle curve salvate/congelate.

R: Riconosci e disponi le curve importanti

Il primo passo è utilizzare solo le curve di pressione e flusso, con la curva di pressione nel campo superiore e quella di flusso in quello inferiore. E’ un ordine gerarchico, perchè nelle ventilazioni pressometriche è la curva di pressione che “comanda” quella di flusso. Inoltre questo ordine sarà comodo nel prosieguo del metodo. Se il ventilatore non ci offre di default questa visione, possiamo facilmente impostarla scegliendo l’ordine delle curve da visualizzare.

Figura 2

In questo modo abbiamo eliminato molti dati inutili per l’analisi e possiamo concentrarci solo su ciò che è veramente indispensabile.

E: Espirazione del ventilatore

Ora individuiamo i punti in cui inizia e finisce la fase espiratoria sulla traccia di flusso. Sono i punti in cui la traccia di flusso incrocia la linea orizzontale per scendere sotto lo zero o per risalire sopra lo zero. Questi punti consentono di frazionare il ciclo respiratorio, definendo fase espiratoria (“exp” nelle figure) la parte che comprende il flusso negativo e fase inspiratoria (“insp” nelle figure) tutto il resto.

Figura 3

S: Supponi che il paziente sia passivo

Nelle ventilazioni pressometriche supponiamo che, in assenza di attività del paziente, sia presente una curva di pressione “quadra” in inspirazione sopra il livello di PEEP ed una curva di flusso decrescente, sia in inspirazione che in espirazione. Vediamo cosa significa.

Figura 4

Nella figura 4 vediamo come dovrebbe essere una curva di pressione passiva. Durante la fase espiratoria ci aspettiamo il livello di PEEP (in BIPAP la Pbassa durante il tempo di Pbassa), durante la fase inspiratoria un aumento di pressione pari al livello di pressione inspiratoria sopra PEEP (in BIPAP la Palta nel tempo di Palta). La velocità del passaggio dalla PEEP alla pressione inspiratoria (l’angolo α in figura) è regolato con il tempo di salita (rise time). In caso di rise time 0, l’angolo α è di 90°.

La variazione di pressione nel ventilatore determina il flusso. Quando aumenta la pressione nel ventilatore (dalla PEEP alla pressione inspiratoria), il flusso inspiratorio inizia con un picco che poi descresce verso lo zero. Quando si riduce la pressione nel ventilatore (dalla pressione inspiratoria alla PEEP), più o meno specularmente all’inspirazione, un flusso espiratorio inizia con un picco e quindi descresce verso lo zero. Il decadimento passivo del flusso è teoricamente esponenziale (con una convessità, come se fosse attratto, verso la linea dello zero) e la velocità del decadimento è determinata dalla costante di tempo dell’apparato respiratorio (vedi post del 17 luglio 2016) (figura 5).

Figura 5

Applichiamo ora questi concetti alle nostre curve. Ovviamente ci vuole un minimo di fantasia e, sullo schermo dei nostri ventilatori, non possiamo fare che altro che immaginarci le curve passive, senza poterle disegnare concretamente. Ma se ci si prova, si vedrà che in fondo è molto facile.

Figura 6

Nella figura 6 abbiamo disegnato in bianco le ipotetiche curve passive. Abbiamo posizionato la linea della PEEP un po’ più in basso della pressione espiratoria. Questo perchè la PEEP impostata è 5 cmH2O (figura 1, valore di PEEP in nero, in basso), mentre la pressione a fine espirazione misurata è 6 cmH2O (figura 1, valore di PEEP in giallo, in alto a sinistra). Sappiamo quindi che in espirazione la pressione è un po’ più alta di quella impostata.

Guardando la figura 1, sappiamo anche che la pressione di picco (14 cmH2O) è più alta della pressione che abbiamo programmato di raggiungere in inspirazione (13 cmH2O, somma di PEEP 5 + PS 8). Per questo motivo abbiamo considerato una pressione inspiratoria passiva a 13 cmH2O, un po’ più bassa del picco.

Non possiamo sapere l’entità dei picchi di flusso se il paziente fosse passivo, quale la sua costante di tempo. Ci accontentiamo quindi di immaginare flussi decrescenti (verso la linea dello zero) che partono dal picco e finiscono alla fine della inspirazione (volendo essere più fini al punto del trigger espiratorio, correzione tanto più opportuna quanto più il trigger espiratorio è alto) o alla fine della espirazione. E’ una approssimazione comunque assolutamente efficace nell’interpretare le curve.

P: Punto di vista del paziente

Per capire bene come l’attività respiratoria del paziente possa modificare le curve di pressione e flusso, può essere utile fare un altro piccolo sforzo di fantasia. Immaginiamo il paziente coricato supino sotto la curva di pressione e prono sopra la curva di flusso. Vediamo un esempio con le curve di una ventilazione in un paziente completamente passivo (pressione controllata con paralisi muscolare).

Figura 7

Notiamo preliminarmente una cosa. Nel paziente passivo, il flusso inspiratorio può avere un decadimento lineare e non esponenziale (quello espiratorio conserva comunque il decedimento esponenziale). Quindi in presenza di un flusso inspiratorio che va dal picco di flusso al suo termine seguendo una linea retta, potremo considerare il paziente passivo.

Perchè abbiamo messo il paziente in questa strana posizione? Perchè da questa posizione, quando inspira, le curve sono attirate verso la bocca del soggetto sdraiato, mentre quando espira ne sono allontanate. Cioè l’ipotetica attività respiratoria del paziente sdraiato muove le curve con la stessa direzione del flusso di aria che entra ed esce dal proprio apparato respiratorio.

Visualizziamo questo concetto nella figura 8. La figura è un po’ complicata, ma la spiegheremo punto per punto. In bianco sono state sovraimposte alcune possibili modificazioni delle curve dovute all’attività respiratoria del paziente rispetto alle curve passive.

Figura 8

L’inspirazione del paziente durante la fase di flusso espiratorio determina un avvicinamento sia della curva di pressione che di quella di flusso verso la rispettiva linea dello zero (punti 1 e 5 nella figura 8).

L’inspirazione del paziente durante la fase di flusso inspiratorio abbassa la pressione al di sotto dell’onda quadra ed aumenta il flusso rispetto alla fase di decadimento passivo (punti 2 e 6 nella figura 8). In particolare la curva di pressione si “svuota” e la curva di flusso diventa più alta della linea che idealmente congiunge il picco di flusso al flusso presente al momento della fine dell’inspirazione.

L’espirazione del paziente durante la fase di flusso espiratorio allontana pressione e flusso dalla linea dello zero rispetto all’ipotetico andamento passivo (punti 3 e 7 nella figura 8).

L’espirazione del paziente durante la fase di flusso inspiratorio aumenta la pressione delle vie aeree sopra il valore atteso e tende a far decadere rapidamente il flusso inspiratorio (punti 4 e 8 nella figura 8).

Tutto questo NON VA MEMORIZZATO: è sufficiente ricordare il paziente supino sotto la pressione e prono sopra il flusso e ragionare su come sposterebbe le curve l’aria che entra ed esce dalla sua bocca.

Da notare che qualitativamente il flusso inspiratorio è modificato allo stesso modo dall’inspirazione e dall’espirazione del paziente (punti 6 e 8 nella figura 8): in entrambi i casi si osserva una concavità verso il basso della curva di flusso. Come distinguere le due condizioni? Dobbiamo guardare la consensuale variazione di pressione.

Da considerare due presupposti fondamentali:

  • possono essere presenti alterazioni di flusso (rispetto alla passività) in assenza di alterazioni sulla curva di pressione; il flusso è molto sensibile all’attività del paziente, la pressione invece risente anche della performance del ventilatore meccanico: idealmente, se un ventilatore meccanico funzionasse prefettamente non vi sarebbe mai alcuna alterazione della curva di pressione rispetto alla curva passiva;
  • quando sono presenti alterazioni (rispetto alla passività) sia della curve di flusso che di pressione, queste devono essere coerenti tra loro (devono cioè presentarsi nelle accoppiate descritte sopra) per essere attribuibili all’attivitità respiratoria del paziente.

Infine è utile valutare se ci sono fasi di riposo ed equilibrio alla fine del flusso inspiratorio ed alla fine del flusso espiratorio. Queste fasi sono caratterizzate dalla presenza di una pressione stabile ed assenza di flusso, come ad esempio nelle zone ombreggiate della figura 9. Le piccole fluttuazioni della pressione in figura 9 sono ascrivibili al battito cardiaco. Queste zone documentano l’assenza di attività del paziente ed il raggiunto equilibrio pressorio a fine inspirazione (pressione applicata simile a pressione alveolare) ed a fine espirazione (assenza di iperinflazione dinamica).

Figura 9

I: Inspirazione del paziente

Figura 10

Ora applichiamo questi concetti alla nostra paziente, iniziando dalla verifica di eventuale attività inspiratoria.

Analisi durante la fase espiratoria. Nel punto 1 della figura 10 vediamo l’inizio della caduta di pressione durante la fase espiratoria, segno di attività inspiratoria del paziente. Interessante è la traccia di flusso: in questo caso l’avvicinamento al flusso zero non avviene dalla linea espiratoria teorica, ma con una brusco aumento di pendenza dal flusso precedente. In altre parole, prima del punto 1 il flusso espiratorio aveva una certa pendenza, seppur diversa da quella passiva. Di colpo, da questa linea di flusso con una propria pendenza (orizzonatale in questo caso), si verifica un’improvvisa risalita verso lo zero. Anche questo è segno di attività inspiratoria del paziente. Sono coerenti i segni visti su pressione e flusso, quindi sono spiegabili dall’attività inspiratoria del paziente.

Vediamo anche una zona che si ripete all’inizio di ogni fase espiratoria e che abbiamo indicato con un punto interrogativo. Qui ci sono segnali troppo ambigui per essere interpretati. La pressione fluttua sopra e sotto la linea di passività, con associate fluttuazioni del flusso. Tralasciamo in questo già lungo post l’interpretazione di questo punto, che sarà l’argomento del prossimo post.

Analisi durante la fase inspiratoria. Nel punto 2 sono evidenti sia la riduzione della pressione che l’aumento del flusso:  segni coerenti e quindi inequivocabilmente il paziente sta inspirando.

Punto 6. Riposo ed equilibrio

E’ evidente dall figura 6 che al confine tra flussi inspiratori ed espiratori non compare nessuna fase di zero flusso associata ad una pressione costante, come nell’esempio in figura 9. Non possiamo quindi in alcun modo fare previsioni sulla pressione alveolare nè a fine inspirazione nè a fine espirazione. Ne consegue che la pressione alveolare potrebbe essere più elevata della pressione di picco e che potrebbe esserci autoPEEP.

E: Espirazione del paziente

Figura 11

Analizziamo infine la presenza di attività espiratoria (figura 11).

Analisi durante la fase espiratoria. E’ evidente che la curva di flusso si allontana dallo zero nel punto 3. Il flusso espiratorio addirittura tende lievemente ad aumentare durante l’espirazione, segno tipico di espirio attivo. A questo si associa ad una pressione lievemente più alta della PEEP impostata. I segni sono coerenti, quindi abbiamo una espirazione attiva. Da considerare che l’analisi del flusso espiratorio può perdere di valore in presenza di flow limitation (vedi post del 04/06/2012).

Analisi durante la fase inspiratoria. Nel punto 4, verso la fine della fase inspiratoria vediamo l’aumento della pressione delle vie aeree oltre il valore teorico dato dalla somma di PEEP e pressione inspiratoria. Questo si associa ad una caduta verticale del flusso inspiratorio. Anhe in questo caso i segni sono coerenti con la presenza di attività espiratoria prima del termine della fase inspiratoria. Possiamo pensare a quest’ultima come al brusco rilasciamento dei muscoli inspiratori e/o all’attivazione dei muscoli espiratori.

Conclusioni.

Applicando il metodo RESPIRE ad un caso molto semplice (giusto per iniziare), possiamo concludere che:

  • la paziente triggera chiaramente gli atti respiratori (attività inspiratoria alla fine della fase espiratoria)
  • continua ad inspirare attivamente per tutta la durata della fase inspiratoria (attività inspiratoria durante la fase inspiratoria)
  • inizia ad espirare già alla fine della fase inspiratoria (attività espiratoria durante la fase inspiratoria)
  • mantiene una espirazione attiva per tutta l’espirazione (attività espiratoria in fase espiratoria)

Abbiamo insomma una paziente sempre (e tanto) attiva durante tutto il ciclo respiratorio, nonostante i numeri (volume corrente, frequenza respiratoria, volume corrente/frequenza respiratoria) ci dicano che va tutto bene. Forse possiamo ventilare meglio la nostra paziente… ma il “che fare” va oltre l’obiettivo di questo post.

Resta da capire, sempre applicando il RESPIRE, cosa siano quelle strane cose che si vedono in figura 10, contrassegnate dal punto interrogativo… Ne parliamo in settembre.

Come sempre, un sorriso a tutti gli amici di ventilab.

Sforzo inefficace

$
0
0

Figura 10

Ricapitoliamo brevemente l’approccio sistematico all’analisi del monitoraggio grafico proposto più dettagliatamente nel post del 20/08/2017, che abbiamo definito come metodo RESPIRE: R: riconosci le curve importanti (pressione e flusso); E: espirazione del ventilatore (identifica le fasi tra l’inizio del flusso negativo e l’inizio del successivo flusso positivo); S: supponi che il paziente sia passivo (immagina le curve come potrebbero essere molto approssimativamente durante una ventilazione controllata); P: punto di vista del paziente, tra la curva di pressione e quella di flusso; I: inspirazione del paziente (le curve gli si avvicinano rispetto a come hai supposto fossero in condizioni di passività); R: rilasciamento ed equilibrio (fasi di pressione costante a flusso zero in cui si va verso un equilibrio tra pressione delle vie aeree ed alveolare); E: espirazione del paziente (le curve gli si allontanano rispetto a come hai supposto fossero in condizioni di passività).

Ora utilizziamo questo metodo per capire cosa sono quelle oscillazioni di flusso e pressione all’inizio dell’espirazione che avevamo visto nel post precedente e di cui abbiamo rimandato la spiegazione ad oggi (figura 1).

Figura 1

Siamo abituati a considerare la variazioni di flusso durante l’espirazione come un tentativo, non riuscito, di inspirazione del paziente durante la fase espiratoria. Lo definiamo sforzo inefficace. Ciò che vediamo nei cerchi bianchi della figura 1 potrebbe essere quindi una asicronia paziente-ventilatore riconducibile a qualcosa di simile allo sforzo inefficace.

Iniziamo il ragionamento analizzando con il RESPIRE un caso di sforzo inefficaceclassico“.

Figura 2

Dopo aver riconosciuto le tracce di pressione e flusso (R), individuiamo le fasi espiratorie (E), che nella figura 2 abbiamo identificato con le sigle E(1), E(2), E(3) ed E(4). Occupiamoci esclusivamente della terza espirazione della figura, cioè di E(3), che vediamo riprodotta in dettaglio nella figura 3.

Figura 3

Supponiamo (S) come potrebbe essere il flusso espiratorio passivo, che immaginiamo esponenzialmente decrescente (linea tratteggiata rossa).

Pensiamo al punto di vista del paziente (P), che, semplificando rispetto al post del 20/08/2017, abbiamo rappresentato come un individuo che respira posizionato tra le due curve (pressione sopra e flusso sotto). Le alterazioni delle curve rispetto a quanto abbiamo supposto, sono spiegabili dall’attività respiratoria del paziente sovrapposta a quella del ventilatore meccanico? Ricordiamo che l’attività inspiratoria spontanea del paziente aumenta il flusso e tende a ridurre la pressione (se il ventilatore non compensa perfettamente) o la lascia costante (se il ventilatore è efficientissimo).

E’ presente inspirazione del paziente (I)? Abbiamo cioè aumenti del flusso (movimenti verso il punto di vista del paziente P) rispetto a quanto abbiamo supposto (S)? Nel punto 1 della figura 3 vediamo in effetti che la curva di flusso si avvicina al paziente rispetto a quella ipotetica, come se il paziente “la inspirasse”. Questo è compatibile con un’attività inspiratoria del paziente (pur essendo il ventilatore in fase espiratoria). Vediamo ora che succede alla traccia di pressione: ha un andamento compatibile con l’inspirazione del paziente? La pressione resta sostanzialmente costante (forse si riduce lievemente) nel punto della presunta inspirazione del paziente rilevata sulla traccia di flusso.  Anche questo è compatibile con l’eventuale attività inspiratoria del paziente: il compito del ventilatore durante l’espirazione è infatti quello di mantenere costante la PEEP impostata. Se il ventilatore non riuscisse ad adempiere perfettamente il proprio compito, potrebbe esserci in questa fase un piccolo calo di pressione dovuto al fatto che il paziente sottrae dal circuito respiratorio più aria di quanta il ventilatore riesca a metterne. Un aumento di pressione in questo momento sarebbe l’unico reperto inconciliabile con un tentativo di inspirazione del paziente nella fase di espirazione del ventilatore: se il paziente tenta di inspirare (sottraende aria al circuito), la pressione nel circuito del ventilatore non può certo salire. Concludiamo quindi che quanto stiamo osservando è attribuibile all’attività inspiratoria del paziente.

Esistono punti di rilassamento dei muscoli respiratori e conseguente equilibrio delle pressioni tra paziente e ventilatore (R)? Nel punto 3 possiamo certamente affermare di sì: il flusso è 0 e la pressione è quella impostata come PEEP. In assenza di flusso a pressione costante, la pressione nel ventilatore è uguale a quella polmonare. Se siamo a fine espirazione concludiamo che non esiste autoPEEP.

Figura 4

Esiste espirazione attiva del paziente (E)? Sembra di no: concluso l’effetto del tentativo inefficace di inspirazione visto al punto 1, dal punto 2 riprende un flusso espiratorio esponenzialmente decrescente, come evidenziato dalla nuova riga di flusso rossa tratteggiata in figura 4.

 

Potrebbe rimanere da interpretare quel piccolo aumento di pressione che vediamo immediatamente prima del punto 2, ma volutamente lo tralascio perchè sarebbe una spiegazione forse lunga e complessa per un evento clinicamente insignificante.

Applicando il metodo RESPIRE abbiamo così accertato che quello che abbiamo visto è un tentativo di inspirazione durante l’espirazione, cioè uno sforzo inefficace. Certamente per asincronie così evidenti come questo sforzo inefficace, i lettori di ventilab non avevano certo bisogno di un approccio così metodico. Vediamo però se questo può essere utile quando le cose sono meno chiare ed analizziamo ciò che è stato evidenziato nella figura 1, di cui riproduciamo un dettaglio in figura 5.

Figura 5

Come sempre riconosciamo (R) pressione e flusso ed identifichiamo le espirazioni (E), in questo caso indicate con E(1) ed E(2). Analizziamo E(2) e supponiamo (S) come potrebbe essere l’espirazione passiva, identificata con la linea rossa tratteggiata. Quindi poniamo il punto di vista del paziente (P) tra le due curve. Un’analisi di questa espirazione è stata fatta nel post del 20/08/2017, oggi ci occupiamo esclusivamente della sua parte iniziale. Quello che vediamo possono essere sforzi inefficaci?

Concentriamo la nostra attenzione sul momento identificato dalla linea azzurra tratteggiata. Ci sono segni compatibili con l’inspirazione del paziente (I)? Il flusso di avvicina verso il paziente, evento compatibile con una sua attività inspiratoria. Ma nello stesso istante la pressione nelle vie aeree si allontana dal paziente, cioè aumenta. L’incoerenza tra la variazione di flusso e di pressione esclude che ciò che vediamo sia dovuto ad attività inspiratoria del paziente.

Nella figura non vediamo momenti di riposo e rilasciamento (R). Cerchiamo quindi eventuale attività espiratoria del paziente (E), quindi flusso che si allontana dal suo punto di vista o che tende ad aumentare rispetto a quello immediamente precedente. Una simile variazione di flusso si verifica subito dopo il punto appena analizzato in figura 5, e lo vediamo rappresentato in figura 6.

Figura 6

Se riflettiamo sul momento identificato dalla linea tratteggiata azzurra, vediamo che il flusso si allontana dal paziente rispetto al flusso precedente (il precedente flusso diventa sempre il nuovo punto di partenza di una espirazione passiva con andamente decrescentemente esponenziale). Questo potrebbe essere quindi segno di una espirazione attiva. Ma se vediamo cosa succede alla pressione delle vie aeree, questa spiegazione diventa inaccetabile: in quello stesso momento la pressione delle vie aeree infatti si riduce, evento incompatibile con l’espirazione attiva del paziente.

Escludiamo quindi che queste variazioni di flusso e pressioni siano associate ad attività del paziente. Ne consegue che devono essere associate a variazioni dell’attività del ventilatore. Infatti tutto trova una semplice spiegazione se si adotta questo punto di vista: la riduzione del flusso espiratorio in figura 5 è dovuta all’aumento della pressione delle vie aeree. Quindi il ventilatore aumenta la pressione delle vie aeree, questo riduce la differenza di pressione tra polmoni e ventilatore e quindi il flusso espiratorio. Chiaramente il contrario di quanto avviene in figura 6: il ventilatore riduce la pressione e questo porta ad un aumento del flusso espiratorio. Se ci fossero dubbi o curiosità su questo aspetto, li affronterò in risposta a qualche commento (ad esempio, perchè il ventilatore si mette a fare tutta questa “confusione”?).

Il metodo RESPIRE è un neonato in fase di sviluppo. Mi farà certamente piacere ricevere critiche e suggerimenti per migliorarlo (come si può notare, si può trovare già qualche piccola evoluzione in  questo post rispetto al precedente). Tra qualche mese magari potremo raggiungere una proposta più matura (comunque mai definitiva, dal momento che la conoscenza, anche scientifica, non può mai essere definitiva). Che sarà condivisa come sempre liberamente e gratuitamente con tutti coloro che riterranno possa essere utile.

Al momento comunque il RESPIRE si sta dimostrando efficace per affrontare anche asincronie ed artefatti complessi.

Il messaggio principale di oggi mi sembra posso essere riassunto in questi punti:

  • quando si vede una curva ventilatoria “strana“, bisogna resistere alla tentazione di dare al volo diagnosi e soluzione;
  • per capire cosa accade è necessario analizzare sistematicamente la curva di flusso ed in maniera sincrona quella di pressione;
  • se le variazioni, rispetto alla ipotetica passività, delle tracce di flusso e pressione sono coerenti con la presenza di attività respiratoria del paziente, possiamo attribuirle ad esso;
  • qualora non sia soddisfatta la condizione del punto precedente, nascono da anomalie o caratteristiche del sistema ventilatore-circuito ventilatorio (più frequenti di quanto si possa pensare).

Come sempre, un sorriso a tutti gli amici di ventilab.

Reclutamento e PEEP nella ARDS: commento ad un trial clinico.

$
0
0

Quattro giorni fa è stato pubblicato online su JAMA il trial clinico “Effect of Lung Recruitment and Titrated Positive End-Expiratory Pressure (PEEP) vs Low PEEP on Mortality in Patients With Acute Respiratory Distress Syndrome. A Randomized Clinical Trial” (1). I risultati dello studio sono “forti” ed è diventato subito molto popolare (in questi pochi giorni ha già ricevuto quasi 45.000 visualizzazioni). Per questo merita di essere commentato per evitare di limitarsi a ripetere le conclusioni dell’abstract senza avere capito bene di cosa si parla (ahimè vizio frequente, se non la normalità, nella sedicente Evidence Based Medicine).

Partiamo proprio dalle conclusioni dell’abstract: “In patients with moderate to severe ARDS, a strategy with lung recruitment and titrated PEEP compared with low PEEP increased 28-day all-cause mortality.” Questi i numeri: sono morti il 55% dei pazienti con reclutamento+PEEP individualizzata dopo PEEP trial rispetto al 49% dei pazienti con bassa PEEP. Sembra proprio che  reclutamento e scelta della PEEP sulla miglior compliance facciano molto male rispetto alla PEEP scelta con le tabelle PEEP/FIO2. Rimando per eventuali approfondimenti sulle strategie di scelta della PEEP al post del 28/02/2015.

Di fronte a nuove conoscenze, è assolutamento onesto saper cambiare le proprie convinzioni. Su ventilab abbiamo sempre supportato, nella ARDS, la scelta della PEEP che si associa alla minor driving pressure (cioè alla massima compliance): dobbiamo ora suggerire un cambio di strategia? Penso proprio di no, cerchiamo di capire insieme il perchè.

Una premessa prima di entrare nel merito: lo studio ha arruolato 1013 pazienti nel corso di quasi 6 anni in 120 Terapie Intensive. Facendo due semplici conti, mediamente ciascuna  Terapia Intensiva ha arruolato poco meno di 1.5 pazienti/anno, quindi un paziente ogni 8 mesi. Questo vuol dire che la strategia “reclutamento+PEEP trial, applicata nel 50 % dei pazienti, è stata messa in pratica mediamente una volta ogni 16 mesi in ciascuna Terapia Intensiva. Stiamo parlando quindi di un intervento molto raro, sul quale probabilmente le maggior parte delle Terapie Intensive partecipanti non ha molta esperienza. E forse molti pazienti potrebbero essere “sfuggiti” allo screening; se così fosse la rappresentatività del campione potrebbe essere fortemente in discussione.

Vediamo ora quali trattamenti sono stati messi a confronto. Il gruppo di controllo (definito arbitrariamente nello studio come “bassa PEEP“) era ventilato con basso volume corrente (circa 6 ml/kg) e PEEP ricavata dalla tabella PEEP/FIO2 (figura 1): si sceglieva cioè la combinazione tra PEEP e FIO2 presente nella tabella per arrivare ad una SpO2 tra 90 e 95%.

Figura 1

Il gruppo di studio (“reclutamento+PEEP trial“) era ventilato con lo stesso basso volume corrente del gruppo di controllo, ma da esso si differenziava per 2 motivi: 1) riceveva una iniziale manovra di reclutamento alveolare e 2) sceglieva la PEEP dopo un PEEP trial. Dobbiamo perciò tenere presente che l’intervento nel gruppo “reclutamento+PEEP trial era la combinazione di 2 interventi concettualmente indipendenti l’uno dall’altro (in molti studi sono infatti analizzati separatamente). Ne consegue che non possiamo sapere se i risultati ottenuti siano da attribuire a uno dei due o ad entrambi gli interventi.

Esaminiamo ora nel dettaglio come sono stati eseguiti i due interventi nel gruppo di studio, cioè reclutamento e PEEP trial.

Reclutamento.

Ritengo che, già prima dello studio che stiamo commentando, non vi fossero buone ragioni per eseguire il reclutamento al di fuori di casi selezionati (vedi ad esempio il post del 12/4/2014). Lo studio di JAMA sembra confermare piuttosto chiaramente questo punto di vista: il reclutamento non dovrebbe essere fatto di routine nei pazienti con ARDS moderata-grave.

Merita un approfondimento la tecnica di reclutamento utilizzata nello studio. Nei primi 555 pazienti arruolati, il reclutamento è stato eseguito con una pressione controllata di 15 cmH2O più PEEP di 25 cmH2O per 1 minuto, PEEP di 35 cmH2O per un’altro minuto ed infine PEEP 45 cmH2O per 2 minuti. Quindi nei due minuti finali la pressione di plateau era circa 60 cmH2O. Mica poco, vero? Infatti, dopo aver avuto 3 arresti cardiaci durante le manovre di reclutamento alveolare, si è deciso di modificare questo schema di reclutamento. Dopo poco più di metà dei pazienti arruolati, è stato cambiato il protocollo del reclutamento alveolare (fortunatamente per i pazienti, sfortunatamente per la qualità dello studio): le PEEP del reclutamento sono diventate di 25, 30 e 35 cmH2O, ciascuna mantenuta per 1 minuto.

I risultati dello studio sembrano fortemente condizionati proprio dall’esecuzione di queste manovre di reclutamento. I pazienti che hanno fatto il reclutamento hanno avuto un maggior numero di drenaggi pleurici per pneumotorace ed una maggior frequenza di barotrauma rispetto al gruppo di controllo (il cosiddetto “bassa PEEP“). Inoltre, l’unica causa di morte risultata differente tra i due trattamenti è quella con barotrauma, come si può osservare nella tabella semplificata dei risultati della figura 2.

Figura 2

Poichè è ben noto che la manovra di reclutamento alveolare può indurre grave ipotensione (fino all’arresto cardiaco), i pazienti che sono stati sottoposti a questo trattamento hanno ricevuto un carico di fluidi aggiuntivi fino ad arrivare ad una pressione venosa centrale superiore a 10 mmHg (!?) (o a pulse pressure variation < 13%). Ben sappiamo che ricevere liquidi in eccesso si associa ad un aumento della mortalità, in particolare nei pazienti con ARDS (2-3).

Mi sembra si possa dire che il reclutamento, già da solo, sembra aver inciso molto sul risultato negativo del trial clinico.

PEEP trial.

La scelta della PEEP è stata eseguita con un PEEP trial, cioè ricercando la PEEP che si associa alla maggior compliance (quindi alla minor driving pressure se il volume corrente è costante). Questo un approccio è stato più volte proposto e commentato su ventilab (ad esempio vedi il post del 06/10/2013 e quello del 28/02/2015). Nello studio di JAMA questo PEEP trial è però stato condotto in modo molto discutibile, comunque molto diverso da quello sempre descritto su ventilab. Innanzitutto si sono testate solo PEEP di 23, 20 17, 14 ed 11 cmH2O. La PEEP alla fine utilizzata per la ventilazione meccanica corrispondeva a quella che nel PEEP trial aveva ottenuto la maggior compliace, aumentata però di 2 cmH2O (perchè questo aumento? se a qualcuno interessa, ne possiamo discutere nei commenti). I pazienti potevano quindi ricevere una PEEP mai inferiore a 13 cmH2O. Questa scelta può essere in accordo con la strategia del Open Lung Approach, ma non con quello della scelta della PEEP che minimizza la driving pressure, poichè quest’ultima spesso porta a scegliere PEEP inferiori a 10 cmH2O. Lo vedo nella mia pratica clinica ed è confermato in uno studio che ha scelto la PEEP dopo PEEP trial iniziato da 5 cmH2O (la metà dei pazienti riceveva infatti una PEEP minore o uguale a 11 cmH2O) (4). Se vuoi riflettere su questo aspetto, prova a pensare se metteresti una PEEP di almeno 13 cmH2O nella paziente presentata nel già citato post del 28/02/2015

Figura 3

L’utilizzo di PEEP elevate sembra particolarmente temibile nei pazienti con ARDS focale, più di un terzo dei pazienti con ARDS (5): esso infatti produce una iperinflazione delle zone sane del polmone con solo un minimo reclutamento in quelle basali con gli infiltrati alveolari (6). In un bellissimo studio italiano già 10 anni fa si faceva notare che in questo tipo di ARDS era opportuno ridurre la PEEP ben al di sotto dei valori proposti nella tabella utilizzata anche nello studio di JAMA per il gruppo di controllo (il cosiddetto bassa PEEP), una riduzione in media da 13 a 7 cmH2O (7). Questa riduzione di PEEP, rispetto a quella proposta nella tabella PEEP/FIO2, era necessaria per mantenere lo stress index tra 0.9 e 1.1. Con questa strategia di riduzione della PEEP si deteterminava anche la diminuzione della concentrazione plasmatica di mediatori infammatori (IL-6,IL-6 e sTNFα). In figura 3 vediamo l’esempio di come si modificava, in un paziente rappresentativo, lo stress index (da 1.2 a 1) riducendo la PEEP dai 12 cmH2O suggeriti dalla tabella PEEP/FIO2 (a sinistra) ai 5 cmH2O richiesti per avere lo stress index di 1 (a destra). Per qualche informazione in più sullo stress index, puoi leggere anche i post del 15/08/2011 e del 28/08/2011.

A questo punto possiamo comprendere perchè che il PEEP trial proposto nello studio di JAMA non è un vero PEEP trial, ma un modo per scegliere la PEEP meno peggiore tra 13 e 25 cmH2O. Questo senza valutare la presenza di eventuali segni di sovradistensione, molto probabili visto che il 17.4% dei pazienti del “gruppo reclutamento hanno avuto pressioni di plateau > 30 cmH2O (rispetto al 10.7% del gruppo di controllo). Questo anche se nel protocollo era specificato che la pressione di plateau doveva rimanere sotto i 30 cmH2O.

L’iperinflazione nel gruppo “reclutamento+PEEP trial può essere stata ulteriormente aggravata dall’aver trascurato la PEEP intriseca che si aggiunge alla PEEP impostata. Il PEEP trial era eseguito mentre il paziente aveva una frequenza respiratoria di 20/min. Una volta scelta la PEEP da applicare, la frequenza respiratoria veniva aumentata mediamente a 30/min. In questo modo nei pazienti con ARDS si può sviluppare una autoPEEP che si somma sia alla PEEP che alla pressione di plateau. La dimensione dell’autoPEEP durante ventilazione a basso corrente nei pazienti con ARDS è tutt’altro che trascurabile, essendo mediamente 6 cmH2O (8) . Come ben sanno i lettori di ventilab, la best PEEP dovrebbe invece tenere conto anche dell’autoPEEP per limitare la sovradistensione.

Da ricordare infine che elevati valori di PEEP possono aggravare lo scompenso cardiaco destro che insorge acutamente in una quota non trascurabile di pazienti con ARDS (9) e potrebbero quindi aver influito sull’outcome.

Conclusioni.

L’analisi del trial clinico appena apparso su JAMA rende evidente come non vi sia nessun nesso tra i suoi risultati e la scelta della PEEP per minimizzare la driving pressure: si sta parlando di cose completamente diverse. La lettura meditata dello studio ci può comunque insegnare molto:

  1. nella ARDS la sovradistensione sembra essere più temibile dell’atelectrauma: reclutamento e PEEP “alta” non sono quindi un valore da ricercare, ma una carta da giocare solo a ragion veduta in casi selezionati e sotto monitoraggio emodinamico;
    • riservare il reclutamento alveolare alle condizioni di marcata ipossiemia associata a compliance particolarmente bassa, ricordando che probabilmente è più efficace nelle ARDS diffuse (10);
    • PEEP “alta” solo se riduce la driving pressure più di qualsiasi altra PEEP (valutando anche quelle tra i 5 ed i 10 cmH2O); ricordiamo che la PEEP “giusta” nella ARDS spesso può essere una PEEP “bassa”. In definitiva non ha proprio senso porre la scelta tra PEEP “alta” o “bassa”, quando pazienti diversi si giovano di PEEP diverse, talora “alte”, talaltra “basse”;
  2. per limitare la sovradistensione con un approccio individualizzato possiamo:
    • contenere la driving pressure (volume corrente + PEEP ragionati) (meglio ancora la driving pressure transpolmonare);
    • considerare come best PEEP la PEEP totale (quella letta con l’occlusione di fine espirazione) e non quella PEEP impostata sul ventilatore;
    • valutare sempre lo stress index (abituiamoci a vederlo anche “ad occhio”, come in figura 3);
    • in caso di pressione di plateau elevata misurare la pressione transpolmonare di fine inspirazione (possiamo essere abbastanza tranquilli se è al di sotto dei 15-20 cmH2O).

Ed arrivati alla fine, come sempre un sorriso a tutti gli amici di ventilab.

Bibliografia

  1. Writing Group for ART Investigators. Effect of lung recruitment and titrated Positive End-Expiratory Pressure (PEEP) vs low PEEP on mortality in patients with Acute Respiratory Distress Syndrome. A Randomized Clinical Trial. JAMA. Published online September 27, 2017. doi:10.1001/jama.2017.14171
  2. Sakr Y et al. High tidal volume and positive fluid balance are associated with worse outcome in acute lung injury. Chest 2005; 128 :3098-108
  3. Wiedemann HP et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 2006; 354:2564-75
  4. Pintado MD et al. Individualized PEEP setting in subjects with ARDS: a randomized controlled pilot study. Respir Care 2013; 58:1416-23
  5. Puybasset Let al. Regional distribution of gas and tissue in acute respiratory distress syndrome. I. Consequences for lung morphology. CT Scan ARDS Study Group. Intensive Care Med 2000;26:857-69
  6. Nieszkowska A et al. Incidence and regional distribution of lung overinflation during mechanical ventilation with positive end-expiratory pressure. Crit Care Med 2004;
    32:1496-503
  7. Grasso S et al. ARDSnet ventilatory protocol and alveolar hyperinflation. Role of Positive End-Expiratory Pressure. Am J Respir Crit Care Med 2007; 176:761-7
  8. de Durante G et al. ARDSNet lower tidal volume ventilatory strategy may generate intrinsic Positive End-Expiratory Pressure in patients with Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2002; 165:1271-4
  9. Vieillard-Baron A et al. Acute cor pulmonale in acute respiratory distress syndrome submitted to protective ventilation: incidence, clinical implications, and prognosis. Crit Care Med 2001; 29:1551-5
  10.  Constantin JMet al. Lung morphology predicts response to recruitment maneuver in patients with acute respiratory distress syndrome. Crit Care Med 2010; 38:1108-17

PS: ci sarebbero altri aspetti di cui discutere, come ad esempio la scelta di una ventilazione a flusso inspiratorio costante in assistita-controllata, la mancata definizone della durata dell’occlusione di fine inspirazione per calcolare la compliance durante il PEEP trial, l’assenza di qualsiasi dato emodinamico, l’incompatibilità dei risultati con un reale utilizzo della tabella PEEP/FIO2 nel gruppo di controllo. Ma penso che sia sufficiente quanto abbiamo detto finora. Per approfondimenti, si possono fare richieste nei commenti.

Svezzamento (weaning) dalla ventilazione meccanica: come fare il trial di respiro spontaneo.

$
0
0

La ventilazione meccanica invasiva è un’arma indispensabile per il trattamento dell’insufficienza respiratoria acuta.

Quando inizia a migliorare la malattia che ha determinato la necessità di intubazione e ventilazione meccanica, il problema diventa capire il momento giusto per procedere all’estubazione ed alla sospensione della ventilazione meccanica. Questo processo è lo svezzamento (weaning) dalla ventilazione meccanica.

Il weaning dalla ventilzione meccanica espone inevitabilmente a due possibili rischi: l’estubazione prematura, con il paziente che nelle ore successive dimostra di non essere in realtà ancora in grado di respirare in maniera autonoma, rendendo necessaria una nuova intubazione e la ripresa della ventilazione meccanica; l’estubazione ritardata, che porta ad un apparentemente prudenziale ma non necessario prolungamento della durata della ventilazione meccanica, con le annesse possibili complicanze.

La soluzione è semplice: cercare di sbagliare il meno frequentementente possibile la scelta del momento giusto dell’estubazione e della sospensione della ventilazione meccanica…

Per questo obiettivo, possiamo organizzare il ragionamento clinico in due fasi:

1) verificare se sussitono le condizioni per estubare il paziente (prevedere cioè se il paziente potrà rimanere senza tubo tracheale);

2) verificare se vi sono le condizioni per sospendere la ventilazione meccanica (cioè prevedere se il paziente, dopo l’eventuale estubazione, sarà capace di respirare da solo).

Estubare il paziente

Il tubo tracheale mantiene pervie le vie aeree, consendo di aspirare e rimuovere le secrezioni bronchiali. E’ un presidio fondamentale per quei pazienti con espettorazione poco efficace. Parlare di espettorazione, piuttosto che di tosse, sottolinea che il dato a cui prestare attenzione è la capacità di portare realmente all’esterno le secrezioni dell’apparato respiratorio. In molti pazienti intubati l’atto della tosse non raggiunge questa efficacia; in questi casi l’espettorazione andrebbe considerata assente.

La rimozione del tubo tracheale può essere quindi inopportuna nei soggetti, in particolare se ipersecretivi, con espettorazione inefficace. Se siamo in questa condizione, la valutazione del possibile svezzamento dalla ventilazione meccanica si può fermare qui, in attesa di tempi migliori.

Sospendere la ventilazione meccanica

Se il paziente non ha ragionevolmente più bisogno del tubo tracheale, bisogna chiedersi a questo punto se ha ancora bisogno della ventilazione meccanica.

Scartiamo a priori da questa valutazione, e da ogni velleità di estubazione, tutti i pazienti che versano in condizioni molto critiche (ad esempio con instabilità cardiocircolatoria o in coma) e quelli che hanno ancora una insufficienza respiratoria grave, caratterizzata da marcata ipossia o necessità di elevati valori di PEEP e FIO2, e/o acidosi respiratoria o necessità di elevato supporto inspiratorio. Spesso si definiscono queste situazioni con numeri precisi, come ad esempio PaO2/FIO2 ≤ 150 mmHg e PEEP ≥ 8 cmH2O. E’ certamente rassicurante avere numeri a cui fare riferimento, il problema è che questi numeri sono “inventati”. Questo non vuol dire che siano campati per  aria, ma solamente che devono essere sempre visti con flessibilità e con la capacità/responsabilità del medico di declinarli nelle diverse situazioni cliniche.

Per valutare se un paziente possa essere estubato in sicurezza, si esegue il test di respiro spontaneo (spontaneous breathing trial, cioè si sospende la ventilazione meccanica per un breve periodo mentre è ancora intubato.  Il test di respiro spontaneo consente di simulare il carico di lavoro respiratorio che ci sarà dopo l’estubazione e verificare se il soggetto sarà in grado di affrontarlo da solo, senza più supporto meccanico.

Se il paziente “resiste” a questa temporanea sospensione della ventilazione meccanica, dovremmo estubarlo perchè con buona probabilità riuscirà a fare definitivamente a meno di tubo tracheale e ventilatore meccanico. Mi rendo conto che il termine “resiste” non dice nulla di preciso, ma sono convinto che tutti capiscano bene cosa vuol dire: non insorge dispnea e non si attivano i muscoli accessori della respirazione, non si manifesta respiro rapido e superficiale o paradosso, non si genera ipossiemia grave o acidosi respiratoria, non si osservano aritmie gravi, ecc. ecc.

A questo punto è fondamentale intendersi su due aspetti tecnici fondamentali. Primo: cosa intendiamo con “sospendere la ventilazione meccanica”, Secondo: cosa intendiamo per “breve periodo”.

Nello spontaneous breathing trial la sospensione della ventilazione meccanica non coincide necessariamente con la rimozione fisica del ventilatore. Molti studi clinici hanno utilizzato come test di respiro spontaneo anche modalità di supporto inspiratorio considerate irrilevanti nell’aiuto alla ventilazione, riducendo cioè PEEP e pressione di supporto a valori (teoricamente) subclinici o limitati al compenso del carico imposto dal tubo tracheale.

Figura 1

Tutte queste modalità sono state considerate valide per il test di respiro spontaneo : 1) tubo a T (figura 1): si rimuove materialmente il ventilatore meccanico e si connette il tubo tracheale, con un raccordo a T, ad un flusso continuo di gas umidificato ed arricchito di ossigeno; 2) PS 0-PEEP 0: mantenendo il paziente collegato al ventilatore, si azzerano pressione di supporto (PS) e PEEP (con trigger a flusso molto sensibile); 3) CPAP ≤ 5 cmH2O; 4) pressione di supporto 5-8 cmH2O; 5) ATC (automatic tube compensation) senza supporto inspiratorio: il ventilatore applica solo la pressione che calcola necessaria per annullare il carico resistivo del tubo tracheale.

Queste scelte non sono equivalenti. Quale scegliere? Le più recenti linee guida sullo svezzamento dalla ventilazione meccanica mettono a confronto tubo a T e pressione di supporto 5-8 cmH2O, raccomandando l’uso di quest’ultima strategia per aumentare il numero di pazienti estubati con successo (1). Questa conclusione è confermata anche da una successiva meta-analisi (2).

Penso però che questa raccomandazione meriti un approfondimento.

Facciamo il test di respiro spontaneo per indagare se il paziente è in grado di sopportare il lavoro respiratorio una volta sospesa la ventilazione artificale. Pertanto dovrebbe essere preferibile la modalità di spontaneous breathing trial che offre un carico di lavoro respiratorio simile a quello ci sarà realmente dopo l’estubazione. Sappiamo che tubo a TPS 0-PEEP 0 effettivamente offrono lo stesso lavoro respiratorio che dovrà essere affrontato dopo l’estubazione, mentre CPAP e PS 5-7 cmH2O lo riducono rispettivamente di circa il 30% e 50%  (3). Da questo punto di vista, si dovrebbe preferire come test di respiro spontaneo il tubo a T o PS 0-PEEP 0.

Come conciliare l’osservazione che il tubo a T, rispetto alla pressione di supporto, pur sottoponendo il paziente ad uno sforzo più simile a quello che realmente sosterrà una volta estubato, in pratica è un po’ meno accurato nel prevedere l’esito dell’estubazione?

In medicina solitamente la spiegazione si trova nei dettagli importanti (e spesso ignorati dalla sedicente Evidence-based Medicine).

La durata dei trial di respiro spontaneo, negli studi che hanno confrontato il numero dei pazienti estubati con successo, è quasi sempre di 120 minuti (trascorsi in PSV o in tubo a T) (1-2). Gli studi che invece hanno confrontato il lavoro respiratorio durante lo spontanoues breathing trial e dopo l’estubazione, hanno mantenuto il test di respiro spontaneo per periodi molto più brevi di PSV o tubo a T: nella metà degli studi la loro durata era inferiore o uguale a 15 minuti (3).

Ma quanto deve essere lungo un trial di respiro spontaneo? A mio parere non certo 120 minuti. Sappiamo infatti che le variazioni di pattern e lavoro respiratorio durante il test di respiro spontaneo si verificano entro i primi 15 minuti (4-5) e che prolungare lo spontaneous breathing trial (con tubo a T) oltre i 30 minuti non ne aumenta la capacità di previsione dell’esito dell’estubazione (6).

Possiamo ipotizzare che chi è sottoposto ad un trial di respiro spontaneo eccessivamente lungo (120 minuti) senza alcun aiuto (tubo a T) si stanca inutilmente di più rispetto a chi viene aiutato (pressione di supporto). Questa ipotesi è in sintonia con i risultati di un recente studio, in cui quasi tutti i pazienti facevano uno spontaneous breathing trial con tubo a T, la maggior parte dei quali per una durata di 60-120 minuti. Al termine dei test di respiro spontaneo superati, una parte dei pazienti veniva estubata, in altri invece si rimandava l’estubazione di un’ora, durante la quale i muscoli respiratori venivano messi a riposo con la ripresa termporanea della ventilazione meccanica. Il gruppo di pazienti estubati dopo il riposo subiva meno reintubazioni nelle 48 ore successive rispetto a quelli estubati subito (7).

L’argomento è complesso ed articolato ed abbiamo solo accennato ad argomenti che meriterebbero più spazio. Siamo comunque nelle condizioni di concludere proponendo un ragionevole (e sempre flessibile) approccio allo svezzamento dalla ventilazione meccanica:

  • valutare preliminarmente la presenza di espettorazione efficace. Se assente, mantenere l’intubazione tracheale e la ventilazione meccanica; se l’espettorazione è efficace, eseguire il test di respiro spontaneo con approcci diversi in funzione della tecnica utilizzata:
    • PS 5-7 cmH2O: se dopo 30-60 minuti il test non è fallito e si percepisce un basso rischio di fallimento, si può procedere all’estubazione. Nei casi dubbi si può ragionevolmente prolungare l’osservazione fino ai 120 minuti;
    • tubo a T (o PS 0-PEEP o): mi sembra ragionevole non superare i 30 minuti di test;
  • nei pazienti che superano il test di respiro spontaneo con qualche segno di fatica (specialmente se il trial è stato condotto con tuto a T), può essere utile riprendere la ventilazione per un’ora e quindi procedere all’estubazione.

Come sempre, un sorriso a tutti gli amici di ventilab.

Bibliografia
1) Ouellette DR et al. Liberation from mechanical ventilation in critically ill adults: an official American College of Chest Physicians/American Thoracic Society clinical practice guideline. Chest 2017; 151:166-80
2) Burns KEA et al. Trials directly comparing alternative spontaneous breathing trial techniques: a systematic review and meta-analysis. Crit Care  2017; 21:127
3) Sklar MC et al. Effort to breathe with various spontaneous breathing trial techniques. A physiologic meta-analysis. Am J Respir Crit Care Med  2017; 195:1477-85
4) Jubran A et al. Weaning prediction. Esophageal pressure monitoring complements readiness testing. Am J Respir Crit Care Med 2005; 171: 1252-9
5) Figueroa-Casas JB et al. Changes in breathing variables during a 30-minute spontaneous breathing trial. Respir Care 2015;60:155-61
6) Estenban A et al. Effect of spontaneous breathing trial duration on outcome of attempts to discontinue mechanical ventilation. Am J Respir Crit Care Med 1999; 159:512-8
7) Fernandez MM et al. Reconnection to mechanical ventilation for 1 h after a successful spontaneous breathing trial reduces reintubation in critically ill patients: a multicenter randomized controlled trial. Intensive Care Med 2017; 43:1660-7

 

Viewing all 92 articles
Browse latest View live


<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>